
OINK Users Manual
OINK and MapReduce−MPI Library

http://www.sandia.gov/~sjplimp/mapreduce.html − Sandia National Laboratories
Copyright (2009) Sandia Corporation.This software and manual is distributed under the BSD License.

Table of Contents
OINK Documentation..1

Version info:..1
Goals of OINK..1
Contents of OINK Manual..2

1. Building OINK...3
1.1 Making OINK..3
1.2 Building OINK as a library...4
1.3 Running OINK..5
2.6 Command−line options...5

2. OINK Commands..7
2.1 Input script operation...7
2.2 Parsing rules..7
2.3 Input script commands..8

3. Adding Callback Functions to OINK...10
Map() functions...11
Reduce() functions...13
Compare() functions..14
Hash() functions..14
Scan() functions...14

4. Adding Commands to OINK...16
4.1 Source files for the new class..16
4.2 Methods in the new class...17
4.3 Calls to the OINK object manager..17
4.4 Calling back to map() and reduce() functions...22

5. Errors..24
5.1 Error &warning messages...24
Errors:..24
Warnings:..27

cc_find command...28
cc_stats command..29
clear command...30
named commands...31
degree command..34
degree_stats command...35
degree_weight command...36
echo command...37
edge_upper command..38
histo command...39
if command..40
include command...43
input command...44
jump command...46
label command...48
log command..49
luby_find command...50
mr command..51
library commands...52
neigh_tri command..55

OINK Users Manual

i

Table of Contents
neighbor command...56
next command..57
output command...59
pagerank command..61
print command...62
rmat command..63
rmat2 command..63
set command..65
shell command...67
sssp command..68
sssp2 command..68
tri_find command...69
variable command..70

Math Operators..73
Math Functions..73
Variable References...74

vertex_extract command..76
wordfreq command..77

OINK Users Manual

ii

OINK Documentation

Version info:

The OINK "version" is the date when it was released, such as 1 Feb 2011. OINK and MR−MPI library are
updated continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on
this page of the WWW site. Each dated copy of OINK contains all the features and bug−fixes up to and including
that version date. The version date is printed to the screen and log file every time you run OINK. It is also in the
file oink/version.h and in the MR−MPI directory name created when you unpack a tarball.

If you browse the HTML or PDF doc pages for OINK on the MR−MPI WWW site, they always describe
the most current version of OINK.

•

If you browse the HTML or PDF doc pages for OINK included in your tarball, they describe the version
you have.

•

OINK is a simple scripting wrapper around the "MapReduce−MPI library, and also provides a easy−to−use
development framework for writing new MapReduce algorithms and codes. Like the MR−MPI library, OINK will
run on any platform (serial or parallel) that supports MPI. Note the MR−MPI library has its own manual and doc
pages.

The name OINK is meant to evoke the aroma of the Apache Pig platform which wraps the Hadoop MapReduce
capabilities with its high−level Pig Latin language. Since OINK has only a small fraction of Pig's capability, it is
more the sound of a pig, than the pig itself.

Source code for OINK and the MR−MPI library were developed at Sandia National Laboratories, a US
Department of Energy facility. They are freely available for download from the MR−MPI web site and are
distributed under the terms of the modified Berkeley Software Distribution (BSD) License. This basically means
they can be used by anyone for any purpose. See the LICENSE file provided with the distribution for more
details.

The authors of OINK and the MR−MPI library are Steve Plimpton at and Karen Devine who can be contacted via
email: sjplimp,kddevin at sandia.gov.

Goals of OINK

(1) To allow MapReduce algorithms which call the MR−MPI library to be written with a minimum of
extraneous code, to work with input/output in various forms, and to be chained together and driven via a
simple, yet versatile scripting language.

•

(2) To create an archive of map() and reduce() functions for re−use by different algorithms.•
(3) To provide a scripted interface to the lo−level MR−MPI library calls that can speed
development/debugging of new algortihms before coding them up in C++ or another language.

•

We think the first two goals are largely met. See the section on Adding Commands to OINK and the named
command, input, and output doc pages for details of the first goal. See the section on Adding Functions to OINK
for details of the second goal.

The third goal, however, is only partially met. See the MR−MPI library commands doc page for its current status.
The sticking point here is that in a real programming language you can pass a pointer to an arbitrary data structure
to your map() or reduce() functions, but it is hard to do that from a scripting language using text input without
re−inventing something like Python.

1

http://www.sandia.gov/~sjplimp/mapreduce/bug.html
http://www.sandia.gov/~sjplimp/mapreduce.html
http://pig.apache.org
http://hadoop.apache.org
http://www.cs.sandia.gov/~sjplimp/mapreduce.html
http://en.wikipedia.org/wiki/BSD_license
http://www.cs.sandia.gov/~sjplimp
http://www.cs.sandia.gov/~kddevin
http://www.python.org

Contents of OINK Manual

OINK aims to be a simple scripting interface and development environment and the lightweight documentation
reflects that.

Once you are familiar with OINK, you may want to bookmark this page at Section_script.html#comm since it
gives quick access to documentation for all OINK commands.

PDF file of the entire manual, generated by htmldoc

Building OINK

1.1 Making OINK
1.2 Building OINK as a library
1.3 Running OINK
1.4 Command−line options

•

OINK Scripts

2.1 Input script operation
2.2 Parsing rules
2.3 Input script commands

•

Adding Functions to OINK

3.1 Map() functions
3.2 Reduce() functions
3.3 Compare() functions
3.4 Hash() functions
3.5 Scan() functions

•

Adding Commands to OINK

4.1 Source files for the new class
4.2 Methods in the new class
4.3 Calls to the OINK object manager
4.4 Calling back to map() and reduce() functions

•

Errors

5.1 Error &warning messages

•

2

http://www.easysw.com/htmldoc

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

1. Building OINK

This section describes how to build and run OINK, which is a simple C++ program which wraps the
MapReduce−MPI (MR−MPI) library.

1.1 Making OINK
1.2 Building OINK as a library
1.3 Running OINK
1.4 Command−line options

1.1 Making OINK

All of the OINK source files are in the "oink" directory of the MR−MPI distribution tarball. The "src" directory
contains the source files for the MR−MPI library itself.

These are the 4 steps to building OINK:

(1) Insure MPI is installed on your system.•
(2) Build the MR−MPI library.•
(3) Use or create a oink/MAKE/Makefile.machine file appropriate for your machine.•
(4) Type "make machine"•

Here are more details on each step:

(1) MPI installation

MPI is the message passing interface library, which is likely already installed on your Linux box or Mac, and on
most parallel machines. If not, it is freely available. The two most commonly used generic versions are OpenMPI
and MPICH. Download and install one of these if you need to. The default installation location on Linux is under
/usr/local.

Or if you do not plan to run the MR−MPI library or OINK in parallel, you can use the provided dummy MPI
library in the mpistubs dir. From mpistubs, type "make" and you should get a libmpi.a file. If not, you may need
to edit the mpistubs/Makefile.

(2) Build the MR−MPI library

See this section of the MapReduce−MPI library doc pages for instructions on how to do this. When you have
done this a file named src/libmrmpi_machine.a should exist.

(3) Create a Makefile.machine appropriate for your machine.

See the oink/MAKE dir for examples of these. You may be able to use one of these, or edit one that is close to
create one for your machine.

The only settings you need to worry about are those in the top section. Set the C++ compiler name and settings
appropriate for your box. The only extra libraries used by OINK are MPI and MR−MPI. The settings for the latter
are already present in the Makefile.machine files. You may need to change the MPI settings depending on how
you did your installation.

3

http://www.sandia.gov/~sjplimp/mapreduce.html

If you use the MPI compiler wrappers (mpiCC) for building an MPI−based program like OINK, then you likely
need no additional −I or −L or LIB settings.

If you use your system compilers directly, e.g. g++, then you will typically need these MPI−related settings:

An −I setting for where to find the file mpi.h.•
A −L setting for where the MPI library is, libmpich.a•
A LIB setting for the MPI library, e.g. −lmpich•

If you are using the provided dummy MPI library (no parallelism), then see MAKE/Makefile.serial for how to
compile/link with it.

Note that you should insure you build both OINK and the MR−MPI library with the same MPI. If not, confusion
will ensue.

(4) Type "make machine"

Do this from the oink directory where its source files are. If you just type "make" you will see what machine
options are available (first line of oink/MAKE/Makefile.machine files). Some other options are also listed, e.g. for
cleaning up.

If you type "make machine", an executable file oink_machine should be created, e.g. oink_linux or oink_mac. If
that happens, you're done.

If some error is generated, then you'll need to edit your oink/MAKE/Makefile.machine. Find a local make or
machine expert to help if you have problems.

If you build OINK on a new kind of machine, for which there isn't a similar Makefile for in the oink/MAKE
directory, send it to the developers and we'll add it to the OINK distribution.

You can make OINK for multiple platforms from the same oink directory. Each target creates its own object
sub−directory called Obj_name where it stores the system−specific *.o files.

1.2 Building OINK as a library

OINK can be built as a library, which can then be called from another application or a scripting language. This is
done by typing:

make makelib
make −f Makefile.lib foo

where foo is the machine name. The first "make" command will create a current Makefile.lib with all the file
names in your src dir. The 2nd "make" command will use it to build OINK as a library. This requires that
Makefile.foo have a library target (lib) and system−specific settings for ARCHIVE and ARFLAGS. See
Makefile.linux for an example. The build will create the file liboink_foo.a which another application can link to.

When used from a C++ program, the library allows one or more OINK objects to be instantiated. All of OINK is
wrapped in a OINK_NS namespace; you can safely use any of its classes and methods from within your
application code, as needed.

When used from a C or Fortran program or a scripting language, the library has a simple C−style interface,
provided in oink/library.cpp and oink/library.h.

4

1.3 Running OINK

By default, OINK runs by reading commands from stdin; e.g. oink_linux < in.file. This means you first create an
input script (e.g. in.file) containing the desired commands. This section describes how input scripts are structured
and what commands they contain.

You can test OINK on any of the sample inputs provided in the examples directory. OINK input scripts are named
in.*.

Here is how you might run one of the tests on a Linux box, using mpirun to launch a parallel job:

cd src
make −f Makefile.linux # builds src/libmrmpi.a
cd ../oink
make linux # builds oink/oink_linux
cd ../examples
mpirun −np 4 ../oink/oink_linux ../doc/*.txt <in.wordcount

If OINK encounters errors in the input script or while running a command it will print an ERROR message and
stop or a WARNING message and continue. See this section for a discussion of the various kinds of errors OINK
can or can't detect, a list of all ERROR and WARNING messages, and what to do about them.

OINK can run a MapReduce calculation on any number of processors, including a single processor.

2.6 Command−line options

At run time, OINK recognizes several optional command−line switches which may be used in any order. Either
the full word or the one−letter abbreviation can be used:

−echo or −e•
−partition or −p•
−in or −i•
−log or −l•
−screen or −s•
−var or −v•

For example, oink_ibm might be launched as follows:

mpirun −np 16 oink_ibm −var file tmp.out −log my.log −screen none <in.graph

Here are the details on the options:

−echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style, each
command read from the input script will be echoed to the screen and/or logfile. This can be useful to figure out
which line of your script is causing an input error. The default value is log. The echo style can also be set by using
the echo command in the input script itself.

−partition 8x2 4 5 ...

Invoke OINK in multi−partition mode. When OINK is run on P processors and this switch is not used, OINK runs
in one partition, i.e. all P processors run a single calculation. If this switch is used, the P processors are split into

5

separate partitions and each partition runs its own calculation. The arguments to the switch specify the number of
processors in each partition. Arguments of the form MxN mean M partitions, each with N processors. Arguments
of the form N mean a single partition with N processors. The sum of processors in all partitions must equal P.
Thus the command "−partition 8x2 4 5" has 10 partitions and runs on a total of 25 processors.

Note that with MPI installed on a machine (e.g. your desktop), you can run on more (virtual) processors than you
have physical processors.

The input script specifies what simulation is run on which partition; see the variable and next commands.

−in file

Specify a file to use as an input script. This is an optional switch when running OINK in one−partition mode. If it
is not specified, OINK reads its input script from stdin − e.g. oink_linux < in.run. This is a required switch when
running OINK in multi−partition mode, since multiple processors cannot all read from stdin.

−log file

Specify a log file for OINK to write status information to. In one−partition mode, if the switch is not used, OINK
writes to the file log.oink. If this switch is used, OINK writes to the specified file. In multi−partition mode, if the
switch is not used, a log.oink file is created with hi−level status information. Each partition also writes to a
log.oink.N file where N is the partition ID. If the switch is specified in multi−partition mode, the hi−level logfile
is named "file" and each partition also logs information to a file.N. For both one−partition and multi−partition
mode, if the specified file is "none", then no log files are created. Using a log command in the input script will
override this setting.

−screen file

Specify a file for OINK to write its screen information to. In one−partition mode, if the switch is not used, OINK
writes to the screen. If this switch is used, OINK writes to the specified file instead and you will see no screen
output. In multi−partition mode, if the switch is not used, hi−level status information is written to the screen. Each
partition also writes to a screen.N file where N is the partition ID. If the switch is specified in multi−partition
mode, the hi−level screen dump is named "file" and each partition also writes screen information to a file.N. For
both one−partition and multi−partition mode, if the specified file is "none", then no screen output is performed.

−var name value1 value2 ...

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced as
${abc}). An index−style variable will be created and populated with the subsequent values, e.g. a set of filenames.
Using this command−line option is equivalent to putting the line "variable name index value1 value2 ..." at the
beginning of the input script. Defining an index variable as a command−line argument overrides any setting for
the same index variable in the input script, since index variables cannot be re−defined. See the variable command
for more info on defining index and other kinds of variables and this section for more info on using variables in
input scripts.

6

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

2. OINK Commands

This section describes OINK input scripts and what commands are used to define an OINK calculation.

2.1 Input script operation
2.2 Parsing rules
2.3 Input script commands

2.1 Input script operation

OINK executes by reading commands from a input script (text file), one line at a time. When the input script ends,
OINK exits. Each command causes OINK to take some action. It may set an internal variable, read in a file, or
perform a MapReduce operation. Most commands have default settings, which means you only need to use the
command if you wish to change the default.

Note that OINK does not read your entire input script and then perform a calculation with all the settings. Rather,
the input script is read one line at a time and each command takes effect when it is read. Thus this sequence of
commands:

set verbosity 1
mr foo

does something different than this sequence:

mr foo
set verbosity 1

In the first case, the MR object created will have its verbosity set to 1. In the latter case it will have the default
verbosity of 0, since the set command was not used until after the MR object was created.

Many input script errors are detected by OINK and an ERROR or WARNING message is printed. This section
gives more information on what errors mean. The documentation for each command gives additional information.

2.2 Parsing rules

Each non−blank line in the input script is treated as a command. OINK commands are case sensitive. Pre−defined
command names are lower−case, as are specified command arguments. Upper case letters may be used in file
names or user−chosen ID strings.

Here is how each line in the input script is parsed by OINK:

(1) If the last printable character on the line is a ""character (with no surrounding quotes), the command is
assumed to continue on the next line. The next line is concatenated to the previous line by removing the
""character and newline. This allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded. See an exception in
(6). Note that a comment after a trailing ""character will prevent the command from continuing on the next line.
Also note that for multi−line commands a single leading "#" will comment out the entire command.

7

http://www.sandia.gov/~sjplimp/mapreduce.html

(3) The line is searched repeatedly for $ characters, which indicate variables that are replaced with a text string.
See an exception in (6). If the $ is followed by curly brackets, then the variable name is the text inside the curly
brackets. If no curly brackets follow the $, then the variable name is the single character immediately following
the $. Thus ${myTemp} and $x refer to variable names "myTemp" and "x". See the variable command for details
of how strings are assigned to variables and how they are substituted for in input script commands.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.

(6) If you want text with spaces to be treated as a single argument, it can be enclosed in either double or single
quotes. E.g.

print "Value = $t"
print 'Value = $t'

The quotes are removed when the single argument is stored internally. See the if commands for examples. A "#"
or "$" character that is between quotes will not be treated as a comment indicator in (2) or substituted for as a
variable in (3).

IMPORTANT NOTE: If the argument is itself a command that requires a quoted argument (e.g. using a print
command as part of an if command), then the double and single quotes can be nested in the usual manner. See the
doc pages for those commands for examples. Only one of level of nesting is allowed, but that should be sufficient
for most use cases.

2.3 Input script commands

There are 4 kinds of OINK commands:

(1) Set command to alter parameters:

set•

(2) MR−MPI library commands:

mr foo•
foo map ..., foo reduce ..., etc•

(3) Named commands:

input•
output•
myfoo params ... −i ... −o ...•

(4) Miscellaneous commands that are part of the scripting language:

clear•
echo•
if•
include•
jump•
label•

8

log•
next•
print•
shell•
variable•

Here is a list of all OINK input script commands alphabetically:

clear echo if include input jump

label log mr library commandsnamed commandsnext

outputprint set shell variable
These are the named commands currently included in OINK. We will add to this list from time to time. If you
write a useful new command, send it to us and we can include it in the distribution.

cc_find cc_stats

degree degree_stats

degree_weight edge_upper

histo luby_find

neigh_tri neighbor

rmat rmat2

sssp sssp2

tri_find vertex_extract

wordfreq
Here is a link to the MR−MPI library commands that can be invoked directly from an OINK input script:

MR−MPI library commands

9

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

3. Adding Callback Functions to OINK

In the oink directory, the files map_*.cpp, reduce_*.cpp, compare_*.cpp, hash_*.cpp, and scan_*.cpp each
contain one or more functions which can be used as callback methods, passed to MR−MPI library calls, such as
the map() and reduce() operations. This can be done either in named commands that you write, as described in
this section of the documention, or in MR−MPI library commands made directly from an OINK input script.

The collection of these files and callback functions is effectively a library of tools that can be used by new named
commands or your input script to speed the development of new MapReduce algorithms and workflows. Over
time, we intend to add new callback function to OINK, and also invite users to send their own functions to the
developers for inclusion in OINK.

The map(), reduce(), and scan() callback functions include a "void *ptr" as a final argument, which the caller can
pass to the callback. This is typically done to enable the callback function to access additional parameters stored
by the caller. When doing this with functions listed in the map_*.cpp, reduce_*.cpp, and scan_*.cpp files in
OINK, you will want to make the data these pointers point to "portable", so that and "named command" can use
it. Thus you would should not typically encode class−specific or command−specific data in the structure pointed
to. Instead, your caller should create the minimial data structure that the callback function needs to operate, and
store the structure in a map_*.h file that corresponds to the specific map_*.cpp file that contains the function (or
reduce_*.h or scan_*.h). See the file oink/map_rmat_generate.h file as an example. It contains the definition of an
RMAT_params structure, which is used by both the rmat command and the map() methods it uses, listed in
map_rmat_generate.cpp. Both the rmat.h and map_rmat_generate.cpp files include the map_rmat_generate.h
header file to accomplish this. Other commands or callback functions could use the same data structure by
including that header file.

The following sections list the various callback function currently included in OINK, and a brief explanation of
what each of them does.

Note that map() functions come in 4 flavors, depending on what MR−MPI library map() method is being used.
Similarly, scan() functions come in 2 flavors, as documented on the scan() method page. Map_*.cpp and
scan_*.cpp files within OINK can contain any of the 4 or 2 flavors of map() and scan() methods.

3.1 Map() functions
3.2 Reduce() functions
3.3 Compare() functions
3.4 Hash() functions
3.5 Scan() functions

The documenation below this double line is auto−generated when the OINK manual is created. This is done by
extracting C−style documentation text from the map_*.cpp, reduce_*.cpp, compare_*.cpp, hash_*.cpp, and
scan_*.cpp files in the oink directory. Thus you should not edit content below this double line.

In the *.cpp files in the oink directory, the lines between a line with a "/*" and a line with a "*/" are extracted. In
the tables below, the first such line of extracted text is assumed to be the function name and appears in the left
column. The remaining lines appear in the right columns.

10

http://www.sandia.gov/~sjplimp/mapreduce.html

Map() functions

add_label

add a default
integer label
to each key,
key could be
vertex or edge
input: key =
anything,
value = NULL
output: key =
unchanged,
value = 1

add_weight

add a default
floating point
weight to each
key, key could
be vertex or
edge
input: key =
anything,
value = NULL
output: key =
unchanged,
value = 1.0

edge_to_vertex

emit 1 vertex
for each edge,
just first one
input: key =
Vi Vj, value =
NULL
output: key =
Vi, value =
NULL

edge_to_vertex_pair

emit 1 vertex
for each edge,
just first one
input: key =
Vi Vj, value =
NULL
output: key =
Vi, value =
NULL

edge_to_vertices emit 2 vertices
for each edge
input: key =
Vi Vj, value =
NULL
output:
key = Vi,
value = NULL

11

key = Vj,
value = NULL

edge_upper

emit each
edge with Vi
< Vj, drop
self−edges
with Vi = Vj
input: key =
Vi Vj, value =
NULL
output: key =
Vi Vj, value =
NULL, with
Vi < Vj

invert

invert key and
value
input: key,
value
output: key =
value, value =
key

read_edge

read edges
from file,
formatted with
2 vertices per
line
output: key =
Vi Vj, value =
NULL

read_edge_label

read edges and
labels from
file
file format = 2
vertices and
integer label
per line
output: key =
Vi Vj, value =
label

read_edge_weight

read edges and
weights from
file
file format = 2
vertices and
floating point
weight per
line
output: key =
Vi Vj, value =
weight

read_vertex_label

12

read vertices
and labels
from file
file format =
vertex and
integer label
per line
output: key =
Vi, value =
label

read_vertex_weight

read vertices
and weights
from file
file format =
vertex and
floating point
weight per
line
output: key =
Vi, value =
weight

read_words

read words
from file,
separated by
whitespace
output: key =
word, value =
NULL

rmat_generate

generate graph
edges via
recursive
R−MAT
algorithm
input: # to
generated
&R−MAT
params
extracted from
RMAT_struct
in ptr
output: key =
Vi Vj, value =
NULL

Reduce() functions

countcount
number of
values
associated

13

with key
input: KMV
with key
and one or
more values
output: key
=
unchanged,
value =
count

cull

eliminate
duplicate
values
input: KMV
with key
and one or
more values
(assumed to
be
duplicates)
output: key
=
unchanged,
value = first
value

Compare() functions

Hash() functions

Scan() functions

print_edge

print
out an
edge to
a file
input:
key =
Vi Vj,
value =
NULL

print_string_intprint
out key
as
string
and
value
as int,

14

to a
file
input:
key =
string,
value =
int

print_vertex

print
out an
vertex
to a
file
input:
key =
Vi,
value =
NULL

15

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

4. Adding Commands to OINK

The purpose of this section is to give details of how to write new named commands that can be added to OINK
and which will be invokable by your input scripts and will interact appropriately with other OINK commands.

OINK is designed to make this easy to do with a minimum of special coding on your part. Several such named
commands are included with the OINK distribution; more will be added over time. See this section of the manual
for a list of the current named commands in OINK. We also invite OINK users to send email to the developers
with new commands they have written and wish to share, so we can add them to the distribution, attributed to you.

4.1 Source files for the new class
4.2 Methods in the new class
4.3 Calls to the OINK object manager
4.4 Calling back to map() and reduce() functions

4.1 Source files for the new class

In OINK a named command is a child class that derives from the Command parent class (see src/command.cpp
and src/command.h), meaning that it contains several methods that can be called by the OINK framework. Adding
a new named command to OINK is as simple as writing the code for it in two new files (e.g. foo.cpp and foo.h),
dropping them into the src directory, and re−building OINK.

It is easiest to understand the description that follows if you look at an example named command in OINK. In
what follows we will use the degree command, contained in src/degree.cpp and src/degree.h for illustration
purposes.

The *.h file for a new named command should have lines like these at the top (from the src/degree.h file):

#ifdef COMMAND_CLASS
CommandStyle(degree,Degree)
#else

CommandStyle(arg1,arg2) is a macro that gets converted by the OINK build procedure into source code. Arg1 is
the "name" of the named command, which is how you reference it in your input script, e.g. as

degree −i graphdir −o out/outfile NULL

Arg2 is the class that implements that command.

The list of all such named commands will appear in the style_command.h file after OINK is (re)built, via a make
command.

The remainder of the *.h file (between the #else and final pair of #endif) is the definition of your new class. Note
that you will need to include the mapreduce.h file (from the MR−MPI library src dir) and the MAPREDUCE_NS
namespace if your class definition includes any map(), reduce(), etc callback functions since they have the
"KeyValue" class name in their prototype.

16

http://www.sandia.gov/~sjplimp/mapreduce.html

4.2 Methods in the new class

When a line in the input script starts with a named command, the associated class is instantiated, its params() and
run() methods are called, and the instance of the class is destroyed.

The constructor of your new class should set two variables, ninputs and noutputs, which are the number of input
and output descriptors it requires you to list in the input script. For the degree command, ninputs = noutpus = 1, as
illustrated in the example above.

Your new class is required to define only two methods: params() and run().

Params() is passed the list of arguments following the command name, excluding the "−i" and "−o" arguments,
which are processed separately by the parent Command class. Your params() method should parse and check the
arguments and generate an error message if the number of arguments is incorrect or any of their values is invalid.
Note that the degree command takes 0 arguments.

Run() is called to invoke the meat of your command and it can perform any series of MapReduce or other
operations you wish, using as many MapReduce objects (from the MR−MPI library) and MR−MPI objects
(managed by OINK) as you wish. The calls that run() can make to the OINK object manager (obj) are discussed
in the next section.

The desstructor of your new class should free any memory it has allocated, including any local MapReduce
objects that it allocated. Note that this is different from MR−MPI objects and the underlying MapReduce objects
they wrap, and which are often associated with the input and output descriptors of your command in the input
script; those objects are created/destroyed by OINK itself, as discussed in the next section.

4.3 Calls to the OINK object manager

These are the calls that the run() method of your new class can make to the OINK object manager. Each is
discussed below. Note that you make the calls via the "obj" pointer which is visible to your class, e.g.
obj−>cleanup(). This means you should add the line

#include "object.h"

at the top of your *.cpp file.

MapReduce *Object::create_mr();
MapReduce *Object::create_mr(int verbosity, int timer,
 int memsize, int outofcore);
MapReduce *Object::copy_mr(MapReduce *mr);
int Object::permanent(MapReduce *mr);

MapReduce *Object::input(int index);
MapReduce *Object::input(int index,
 void (*map1)(int, char *, KeyValue *, void *),
 void *ptr);
MapReduce *Object::input(int index,
 void (*map2)(int, char *, int, KeyValue *, void *),
 void *ptr);
MapReduce *Object::input(int index,
 void (*map1)(int, char *, KeyValue *, void *),
 void (*map2)(int, char *, int, KeyValue *, void *),
 void *ptr);

17

void Object::output(int index, MapReduce *mr);
void Object::output(int index, MapReduce *mr,
 void (*scankv)(char *, int, char *, int, void *),
 void *ptr, int disallow);
void Object::output(int index, MapReduce *mr,
 void (*scankmv)(char *, int, char *, int, int *, void *),
 void *ptr, int disallow);
void Object::output(int index, MapReduce *mr,
 void (*map)(uint64_t, char *, int, char *, int,
 KeyValue *, void *),
 void *ptr, int disallow);
void Object::output(int index, MapReduce *mr,
 void (*reduce)(char *, int, char *, int, int *,
 KeyValue *, void *),
 void *ptr, int disallow);
void Object::output(int index, MapReduce *mr,
 void (*scankv)(char *, int, char *, int, void *),
 void (*scankmv)(char *, int, char *, int, int *, void *),
 void (*map)(uint64_t, char *, int, char *, int,
 KeyValue *, void *),
 void (*reduce)(char *, int, char *, int, int *,
 KeyValue *, void *),
 void *ptr, int disallow);

void Object::cleanup();

Here is a brief summary of the calls your run() method will typically make:

1 call to input() for each of its Ninput input descriptors•
calls to create_mr() or copy_mr() for additional MapReduce objects it uses•
1 call to output() for each of its Noutput output descriptors•
final call to cleanup() at the end•

The details are discussed below.

Your run() method should call one of the 4 variants of the input() methods one time for each of its inputs. Which
variant it calls depends on what forms of input you wish to support, which is related to the "−i" arguments
specified with your named command in the input script and additional options set by the input command.

Each call takes an "index" argument which is the index of the input descriptor being referenced, from 1 to
Ninputs. Each call returns a pointer to a MapReduce object which will contain the desired input data as key/value
(KV) pairs. As the named command doc page explains, each input descriptor for your command can be specified
in the input script as one or more files or directories or as an existing MR−MPI object. For reading files, there are
2 kinds of map() methods that can be used to convert the file contents into KV pairs, one where a filename is
passed to your callback function, and the other where a chunk of bytes is passed to your callback function. See the
map() method doc page for details.

If you invoke this method:

MapReduce *Object::input(int index);

then the input descriptor must be specified in your input script as an existing MR−MPI object. No reading of files
is allowed.

If you invoke this method:

MapReduce *Object::input(int index,

18

 void (*map1)(int, char *, KeyValue *, void *),
 void *ptr);

then the input can be specified as either an MR−MPI object or as files which will be processed via the map1()
callback function which receives a filename as an argument, so that it can open the file, read it, and generate KV
pairs.

If you invoke this method:

MapReduce *Object::input(int index,
 void (*map2)(int, char *, int, KeyValue *, void *),
 void *ptr);

then the input can be specied as either an MR−MPI object or as files which will be processed via the map2()
callback function which receives a chunk of bytes read from a file as an arbument, so that it can convert the byte
string into KV pairs. To use this map2() method, you would also need to specify an input command in your input
script that setup various options needed to call the MR−MPI library map() method that uses map2() as a callback
function.

If you invoke the 4th variant:

MapReduce *Object::input(int index,
 void (*map1)(int, char *, KeyValue *, void *),
 void (*map2)(int, char *, int, KeyValue *, void *),
 void *ptr);

then both kinds of map() callback functions can be specified, map1() and map2(), and OINK will select which to
use depending on what options have been setup via the input command for this input descriptor.

Note that you have to provide the map1() and/or map2() callback functions to the input() calls, with the correct
prototype. As discussed below and on this doc page, they can be static methods in your class, or they can be
map() methods in separate files in the OINK src directory, which are named map_*.cpp.

Also note that if you want to provide maximum flexibility for using your named command, then you should
provide one of both flavors of callback map() functions for allowing input from files along with input from an
existing MR−MPI object. If you do not provide either callback or just one of the two, then input scripts will be
limited in what forms of input descriptor they can define.

Your run() method should call one of the 6 variants of the output() methods one time for each of its outputs.
Which variant it calls depends on what forms of output you wish to support, which is related to the "−o"
arguments specified with your named command in the input script and additional options set by the output
command.

Each call takes an "index" argument which is the index of the output descriptor being referenced, from 1 to
Noutputs. Each call also takes a MapReduce object pointer "mr", which contains the data you wish to output. As
the named command doc page explains, each output descriptor for your command is specified in the input script
with 2 parts, either of which can be NULL. The first part is a filename for writing output to files. The second part
is the ID of an MR−MPI object which will contain the output. For writing files, there are 4 kinds of callback
methods that can be used to write the contents of "mr" to a file. Each of these 4 methods is called with a "FILE *"
as its final "void *" argument. This is the file pointer to a file created and opened (and later closed) by OINK
which the callback method can write its data to. If you pass your own non−NULL pointer to the callback method
via the "void *ptr" argument to the output() calls, then it will be appended to the FILE *, so that it can be
dereferenced as a 2nd pointer passed to the callback function.

19

If you invoke this method:

void Object::output(int index, MapReduce *mr);

then the output descriptor must be specified in your input script as only defining a MR−MPI object for output. No
writing to files is allowed. This call will assign the ID specified in your input script to the MR−MPI object that
wraps "mr". Also note, that this will remove the ID from any other MR−MPI object that has the same ID. They
then become unnamed or temporary MR−MPI objects which will be deleted at the end of your run() method. See
further discussion of temporaray versus permanent MR−MPI objects in the next section.

If you invoke one of these 2 methods:

void Object::output(int index, MapReduce *mr,
 void (*scankv)(char *, int, char *, int, void *),
 void *ptr, int disallow);
void Object::output(int index, MapReduce *mr,
 void (*scankmv)(char *, int, char *, int, int *, void *),
 void *ptr, int disallow);

then the output can be specified as either an MR−MPI object or as files which will be written to via the scankv()
or scankmv() callback functions respectively. In the first case, the scankv() function will receive key/value (KV)
pairs, one at time from the "mr" MapReduce object. In the second case, the scankmv() function will receive
key/multivalue (KMV) pairs, one at time from the "mr" MapReduce object. The MapReduce object will be
unaltered by this operation. See the scan() method doc page in the MR−MPI library for details. The "disallow"
flag is explained below.

If you invoke one of these 2 methods:

void Object::output(int index, MapReduce *mr,
 void (*map)(uint64_t, char *, int, char *, int,
 KeyValue *, void *),
 void *ptr, int disallow);
void Object::output(int index, MapReduce *mr,
 void (*reduce)(char *, int, char *, int, int *,
 KeyValue *, void *),
 void *ptr, int disallow);

then the output can be specified as either an MR−MPI object or as files which will be written to via the map() or
reduce() callback functions respectively. In the first case, the map() function will receive key/value (KV) pairs,
one at time from the "mr" MapReduce object. In the second case, the reduce() function will receive
key/multivalue (KMV) pairs, one at time from the "mr" MapReduce object. For the first case, the MapReduce
object will typically be unaltered by this operation, since the MR−MPI library map() method is called with
addflag=1, so that the existing KV pairs are preserved. But your map() callback function should not emit any new
KV pairs. For the second case, the MapReduce object will be altered by this operation, since the MR−MPI library
reduce() method deletes the KMV pairs and replaces them with new KV pairs which your reduce() callback
function may or may not emit. The "disallow" flag is explained below.

If you invoke the 6th variant:

void Object::output(int index, MapReduce *mr,
 void (*scankv)(char *, int, char *, int, void *),
 void (*scankmv)(char *, int, char *, int, int *, void *),
 void (*map)(uint64_t, char *, int, char *, int,
 KeyValue *, void *),
 void (*reduce)(char *, int, char *, int, int *,
 KeyValue *, void *),
 void *ptr, int disallow);

20

then any of the 4 kinds of callback functions can be specified, namely scankv(), scankmv(), map(), or reduce().
Those that you do not wish to provide or that are not compatible with the current state of the MapReduce object
"mr" (which will contain either kV or KMV pairs, but not both), can be specified as NULL.

Note that you have to provide each of these 4 callback functions to the output() calls, with the correct prototype.
As discussed below and on this doc page, they can be static methods in your class, or they can be methods in
separate files in the OINK src directory, which are named scan_*.cpp, map_*.cpp, and reduce_*.cpp respectively.

Also note that if you want to provide maximum flexibility for using your named command, then you should
provide at least one flavor of a callback function for allowing output to files along with output to an MR−MPI
object. If you do not do this, then input scripts will be limited in what forms of output descriptor they can define.

All but the first of the output() variants can be called with an optional disallow flag which is set to 0 by default. If
these methods are called with disallow=1, then no output to an MR−MPI object is allowed. This is useful if you
expect the run() method of your named command to subsequently change the data stored in the MapReduce
object, and thus make the data written to an output file differ from what is stored in the MapReduce object.

Your run() method may need to use additional MapReduce objects as workspace, in addition to its inputs. Some
of these may end up holding the data you wish to output.

One key point to understand is that the OINK object manager keeps track of two kinds of MR−MPI objects, each
of which is a thin wrapper on MapReduce objects which hold your key/value (KV) or key/multivalue (KMV)
data. Each MR−MPI object can be "permanent" meaning it has an ID which can be referenced by input script
commands. Or it can be "temporary", meaning it has no ID and was created to hold data input from a file or by the
function calls discussed below. Permanent MR−MPI objects persist until they are explicitly deleted by your input
script. Temporary MR−MPI objects are deleted at the end of your run() method; they can be thought of as
workspace created and used by your run() method.

These two calls create a new temporary MR−MPI object and return a pointer to the MapReduce object contained
within it:

MapReduce *Object::create_mr();
MapReduce *Object::create_mr(int verbosity, int timer,
 int memsize, int outofcore);

The first variant will use the default settings for the MapReduce object; see the set command and the settings doc
page of the MR−MPI library for details. The second variant allows you to override a few of the settings with
specified values.

This call makes a copy of the "mr" MapReduce object, wraps it in a new temporary MR−MPI object, and returns
a pointer to the new MapReduce object:

MapReduce *Object::copy_mr(MapReduce *mr);

There are two reasons to create new and copied MapReduce objects via these calls, rather than direcly invoking
MR−MPI library calls within your run() method. I.e. two reasons to do one of these:

MapReduce *mr = obj−>create_mr();
MapReduce *mr2 = obj−>copy(mr);

instead of one of these:

MapReduce *mr = new MapReduce();
MapReduce *mr2 = mr−>copy();

21

The first reason is that OINK will manage the memory associated with the new MR−MPI objects and free them
for you at the end of your run() method; see the cleanup() method discussion below. The second is that you can
assign an ID to these temporary MR−MPI objects via the output() calls discussed above, which you cannot do if
you create the MapReduce object directly yourself. I.e. you cannot pass to an output() method a pointer to a
MapReduce object that you allocated yourself if that operation will assign an ID (specified in your input script) to
the MR−MPI object.

You are of course free to create additional MapReduce objects yourself via direct calls to the MR−MPI library. In
this case you should insure you free the objects yourself before the run() method ends, so as not to leak memory.

One additional point is that it is fine to do this within your run() method, where mr is a pointer returned by
obj−>create_mr():

mr = obj−>copy(mr);

whereas you should not do this:

mr = mr−>copy();

The former simply overwrites the local mr pointer, but OINK will manage and free the memory if necessary for
the underlying MapReduce objects associated with both the original and new mr pointers. The latter will leak
memory since the underlying MapReduce object associated with the original mr pointer is lost.

This call is useful for checking whether a MR−MPI object has been assigned a name or not, when it was used for
input or output:

int Object::permanent(MapReduce *mr);

It is called using a MapReduce object pointer and returns a 1 if the associated MR−MPI object that wraps it has a
name, and a 0 if it does not. There are two uses for this call.

First, it can be used after an input() call to determine whether the input was done from a file or an existing
MR−MPI object. In the former case permanent() will return 0, since the new MR−MPI object holding the data is
unnamed. In the latter case it will return 1, since the MR−MPI object holding the data was named in your input
script as one of the "−i" arguments to the named command. If the run() method will subsequently alter the
MapReduce object and it is permanent, you can make a copy of it, so as to not alter the original.

Second, it can be used after an output() call to determine whether the MapReduce object was assigned a name.
This will be the case if a MR−MPI ID was specified in your input script as one of the "−o" arguments to the
named command. If this is the case, you typically do not want to alter the data in the MapReduce object after
outputting it. If you wish to further process the data, you can make a copy.

Finally, this method should be called at the end of your run() method to free all the temporary MR−MPI objects
stored by OINK, and perform other internal cleanup:

void Object::cleanup();

4.4 Calling back to map() and reduce() functions

You run() method will typically invoke various methods from the MR−MPI library which involve callback
functions, e.g. for performing map() or reduce() operations.

22

The MR−MPI library manual discusses the general rules for passing a pointer to a callback function to a
MR−MPI library method. Since you will be doing this from within the class that encodes your named command
you have two choices.

First, you can pass a pointer to a static function declared within your class. This function cannot directly access
any class variables, but you can pass it the "this" pointer for the class (as the void * argument to the map() or
reduce() function) which the callback function can use to access class variables indirectly, through that pointer. If
you do this, then the map() and reduce() methods defined in your class can only be used by that named command.

An alternative is to put your callback functions in their own files, named map_*.cpp for map() functions,
reduce_*.cpp for reduce() functions, compare_*.cpp for compare() functions, hash_*.cpp for hash() functions,
and scan_*.cpp functions. By doing this the callback functions can be used by any named command or as
arguments to the "MR−MPI library commands" used in an input script to invoke the MR−MPI library methods
directly. See the oink/rmat.cpp file, which implements the rmat command, for an example of a named command
which accesses several of its callback functions in this manner.

Each map_*.cpp file (and reduce_*.cpp, compare_*.cpp, etc) can contain one or more map() (reduce(),
compare(), etc) callback functions. These are not class methods, but stand−alone functions. See examples in the
oink directory. The header files that contain the prototypes for these functions are named style_map.h,
style_reduce.h, etc and are auto−generated when OINK is built. Your named command class, e.g. rmat.cpp,
simply needs to include these style header files in order to use any of the callback functions in OINK. Likewise,
any callback function included in one of these files can be accessed by name in your input script when using one
of the MR−MPI library commands. Documentation for the collection of map(), reduce(), etc functions is also
auto−extracted and included in this section of the OINK documentation. Instructions on how to pass generic
pointers to the callback functions is also discussed in this section.

It is also possible in the run() method of your named command to select a callback function based on an input
script parameter to your command. For example, the input script could list the name of a particular compare()
function you wish to you to use to sort the data in a MapReduce object. By calling the appropriate lookup()
method in the MRMPI class (oink/mrmpi.cpp), the parameter string can be converted into a matching function
pointer. For example, consider these lines of code:

MapReduce *mr = obj−>create_mr();
...
CompareFnPtr compare = compare_lookup(userparam);
mr−>sort_keys(compare);

In this example "userparam" is a string, listed in the input script as a command parameter, which contains a
function name, e.g. mySpecialCompare. Assuming that function is included in OINK in a compare_*.cpp file, the
the compare_lookup() method will be able to match the string to the function and return a pointer to the function
which can then be used as an argument to the sort_keys() MR−MPI library method.

The definition of CompareFnPtr and all other callback function pointers is in the "typedefs.h" file, which can be
included at the top of your named commmand *.cpp file.

23

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

5. Errors

OINK tries to flag errors and print informative error messages so you can fix the problem.

If you get an error message about an invalid command in your input script, you can determine what command is
causing the problem by looking in the log.oink file or using the echo command to see it on the screen. For a given
command, OINK expects certain arguments in a specified order. If you mess this up, OINK will often flag the
error.

Generally, OINK will print a message to the screen and logfile and exit gracefully when it encounters a fatal error.
Sometimes it will print a WARNING to the screen and logfile and continue on; you can decide if the WARNING
is important or not. If OINK crashes or hangs without spitting out an error message first then it could be a bug

If you think you have found a bug in OINK, please send an email to the developers with info about the problem.
Anything you can do to isolate the problem and reproduce it on a small data set will be helpful.

5.1 Error &warning messages

These are two alphabetic lists of the ERROR and WARNING messages OINK prints out and the reason why. If
the explanation here is not sufficient, the documentation for the offending command may help. Grepping the
source files for the text of the error message and staring at the source code and comments is also not a bad idea!
Note that sometimes the same message can be printed from multiple places in the code.

Errors:

All universe/uloop variables must have same # of values
Self−explanatory.

All variables in next command must be same style
Self−explanatory.
Cannot attempt to open a 2nd input script, when the original file is still being processed.

Arccos of invalid value in variable formula
Argument of arccos() must be between −1 and 1.

Arcsin of invalid value in variable formula
Argument of arcsin() must be between −1 and 1.

Cannot open input script %s
Self−explanatory.

Cannot open log.oink
The default OINK log file cannot be opened. Check that the directory you are running in allows for files
to be created.

Cannot open logfile %s
The OINK log file specified in the input script cannot be opened. Check that the path and name are
correct.

Cannot open logfile
The OINK log file named in a command−line argument cannot be opened. Check that the path and name
are correct.

Cannot open screen file
The screen file specified as a command−line argument cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot open universe log file

24

http://www.sandia.gov/~sjplimp/mapreduce.html
http://www.sandia.gov/~sjplimp/mapreduce.html

For a multi−partition run, the master log file cannot be opened. Check that the directory you are running
in allows for files to be created.

Cannot open universe screen file
For a multi−partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot redefine variable as a different style
An equal−style variable can be re−defined but only if it was originally an equal−style variable.

Command input is equal−style variable
Only variables that store strings can be used.

Command input variable is unknown
Self−explanatory.

Command outputs must be specified in pairs
Self−explanatory.

Could not create dir for file %s\n
Self−explanatory.

Could not open file in print
This comes from the output "print" routine of the neigh_tri command.

Could not open output file %s for output object()
Self−explanatory.

Divide by 0 in variable formula
Self−explanatory.

Expected floating point parameter in variable definition
The quantity being read is an integer on non−numeric value.

Expected integer parameter in variable definition
The quantity being read is a floating point or non−numeric value.

Failed to allocate %d bytes for array %s
Your OINK simulation has run out of memory. You need to run a smaller simulation or on more
processors.

Failed to reallocate %d bytes for array %s
Your OINK simulation has run out of memory. You need to run a smaller simulation or on more
processors.

ID in mr command is already in use
Self−explanatory.

Illegal ... command
Self−explanatory. Check the input script syntax and compare to the documentation for the command. You
can use −echo screen as a command−line option when running OINK to see the offending line.

Input line too long after variable substitution
This is a hard (very large) limit defined in the input.cpp file.

Input line too long: %s
This is a hard (very large) limit defined in the input.cpp file.

Invalid Boolean syntax in if command
Self−explanatory.

Invalid named command switch
Only −i and −o are allowed.

Invalid command−line argument
One or more command−line arguments is invalid. Check the syntax of the command you are using to
launch OINK.

Invalid keyword in variable formula
Self−explanatory.

Invalid math function in variable formula
Self−explanatory.

Invalid seed for Marsaglia random # generator

25

The initial seed for this random number generator must be a positive integer less than or equal to 900
million.

Invalid syntax in variable formula
Self−explanatory.

Invalid variable evaluation in variable formula
A variable used in a formula could not be evaluated.

Invalid variable in next command
Self−explanatory.

Invalid variable name in variable formula
Variable name is not recognized.

Invalid variable name
Variable name used in an input script line is invalid.

Invalid variable style with next command
Variable styles equal and world cannot be used in a next command.

Label wasn't found in input script
Self−explanatory.

Log of zero/negative value in variable formula
Self−explanatory.

MR ID must be alphanumeric or underscore characters
Self−explanatory.

MR object map command variable is unknown
Variable used as collection of strings is not recognized.

MR object add comand MR object does not exist
Second MR object is not recognized.

MR object command input is equal−style variable
Only variables that store strings can be used.

MR object created by copy already exists
This command creates a new MR object, which cannot already be defined.

MR object map command MR object does not exist
Second MR object is not recognized.

Mismatch in command inputs
Named command defines different number of inputs.

Mismatch in command outputs
Named command defines different number of outputs.

Must use −in switch with multiple partitions
A multi−partition simulation cannot read the input script from stdin. The −in command−line option must
be used to specify a file.

Object input() invoked with invalid index
Index argument must be from 1 to Ninputs.

Object input() map function does not match input mode
Input command is used to select map mode (mmode) which much match map() function.

Object input() with no map function
Input script specified input from file, but no map() method was provided by named command.

Object output() as MR object not allowed
Input script speficied output as MR object, but named command invoked disallow flag.

Object output() called for unknown MR object
A MapReduce object unknown to the object manager was passed to the output() method by a named
command.

Object output() invoked with invalid index
Index argument must be from 1 to Noutputs.

Object permanent() called for unknown MR object
A MapReduce object unknown to the object manager was passed to the permanent() method by a named

26

command.
Ouptut MR ID must be alphanumeric or underscore characters

Self−explanatory.
Power by 0 in variable formula

Self−explanatory.
Processor partitions are inconsistent

The total number of processors in all partitions must match the number of processors LAMMPS is
running on.

RMAT a,b,c,d must sum to 1
Self−explanatory.

RMAT fraction must be < 1
Self−explanatory.

Sqrt of negative value in variable formula
Self−explanatory.

Substitution for illegal variable
Input script line contained a variable that could not be substituted for.

Too many edges for one vertex in reduce first_degree
Number of edges of one vertex exceeds max integer in tri_find command. Will never be able to emit N^2
angles.

Tour + vertex reduce exceeds one block
No matching end double quote was found following a leading double quote.

Universe/uloop variable count < # of partitions
A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.

Unknown command: %s
The command is not known to OINK. Check the input script.

Variable name must be alphanumeric or underscore characters
Self−explanatory.

World variable count doesn't match # of partitions
A world−style variable must specify a number of values equal to the number of processor partitions.

Warnings:

Placeholder
No warnings are yet defined in OINK.

27

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

cc_find command

Syntax:

cc_find nthresh −i in1 −o out1.file out1.mr

nthresh = threshhold size at which components are split across processors•
in1 = graph edges: Key = Vi Vj, Value = NULL•
out1 = components: Key = Vi, Value = Ci•

Examples:

cc_find 1000 −i mre −o cc.list cc

Description:

This is a named command which finds all the connected components (CCs) in an undirected graph. A connected
component is a set of vertices where each is connected to one or more other vertices in the set via an edge. The
CCs are found via the MapReduce algorithm of (Cohen) discussed in his paper with extensions described in the
paper of (Plimpton) which attempt to load−balance the calculation across processors when one or a few very large
components exist in the graph.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

In1 stores a set of edges, assumed to have no duplicates or self−edges. This means that either (Vi,Vj) or (Vj,Vi)
appears, but not both. Also (Vi,Vi) does not appear. The input is unchanged by this command.

Out1 will store the assignment of each vertex in the graph to a component ID. The component ID is the smallest
vertex ID of any vertex in the component.

Related commands:

cc_stats

(Cohen) Cohen, "Graph Twiddling in a MapReduce World", Computing in Science and Engineering, 11, 29−41
(2009).

(Plimpton) Plimpton and Devine, "MapReduce in MPI for Large−Scale Graph Algorithms", to appear in Parallel
Computing (2011).

28

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

cc_stats command

Syntax:

cc_stats −i in1

in1 = component assignment for each vertex: Key = Vi, Value = Ci

Examples:

cc_stats −i ccdir

Description:

This is a named command which summarizes and prints out the statistics on connected components (CCs) that
each vertex in a graph belongs to. For each component size n, one line is printed to the screen with the number of
components of size n. This is done in sorted order.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

In1 stores a set of vertices Vi and the component ID Ci which each is assigned to. Typically this will have been
computed previously by the cc_find command. The input is unchanged by this command.

This command produces no output, other than what is written to the screen.

Related commands:

cc_find

29

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

clear command

Syntax:

clear

Examples:

(commands for 1st computation)
clear
(commands for 2nd computation)

Description:

This command deletes all data structures and restores all settings to their default values. Once a clear command
has been executed, it is as if OINK were starting over, with only the exceptions noted below. This command
enables multiple jobs to be run sequentially from one input script.

These settings are not affected by a clear command: the working directory (shell command), log file status (log
command), echo status (echo command), and input script variables (variable command).

Related commands: none

30

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

named commands

Syntax:

cmomand−name params ... −i input1 input2 ,.. −o output1.file output1.ID output2.file output2.ID ...

commmand−name = name of command•
params = zero or more params required by command•
−i = start of input definitions required by command•
inputN = list of 0 or more input objects•
−o = start of output definitions to command•
outputN.file = list of 0 or more output files•
outputN.ID = list of 0 or more output MR−MPI objects•

Examples:

wordfreq 5 −i v_files −o NULL NULL
rmat 10 8 0.25 0.25 0.25 0.25 0.0 12345 −o tmp.rmat NULL
degree −i graph/edges −o degree/degree degree

Description:

Invoke a named command with the list of parameters it requires, as well as the list of input and output objects it
expects. In OINK a named command is a child class that derives from the Command parent class, meaning that it
contains several methods that can be called from the OINK framwork. See this section of the manual for details
on how to write new named commands and add them to OINK. The list of named commands currently included
with OINK are listed on this page. They are also listed in the source code in the file src/style_command.h which is
auto−generated each time that OINK is built.

Each named command has a "name", defined in the *.h file for the class, which is the command name used in the
input script to invoke the command, e.g. wordfreq or rmat or degree in the examples above.

Any arguments that follow the command name, upto a "−i" or "=o" argument are passed as params to the
command before it is invoked, so that it can process and store them as needed. The number and nature of these
parameters are defined by the command itself and it should generate errors if they are not specified correctly. The
code that processes parameters can be written to allow for optional parameters and keywords within the list of
params.

The "−i" and "−o" arguments can be listed in either order. The arguments that follow each of them, either between
them, or upto the end of the command, are passed to an "input" and "output" processing routine within the
command class. Each command requires a specific number of input and output "definitions", as explained below.
Input definitions are single arguments. Output definitions are pairs of arguments. If zero input (or output)
definitions are required by the command, then the "−i" (or "−o") argument need not be specified. If 2 output
definitions are required, then 4 arguments must follow the "−o".

Typically each required input definition is a form of data input that the command requires. It can come from
reading one or more files or from an MR−MPI object that already exists. Similarly, each required output
definition is a form of data output that the command produces. It can be stored either in one or more files or in an
MR−MPI object that the command creates. In OINK, an MR−MPI object is a thin wrapper on a MapReduce
object created via the MR−MPI library. See this doc page for more discussion of MR−MPI objects and input
script operations that can be performed on them directly.

31

http://www.sandia.gov/~sjplimp/mapreduce.html

Each input definition inputN is one of three things.

First, it can be the ID of an existing MR−MPI object, which wraps a MapReduce object which contains key/value
pairs. If inputN matches such an ID, then the second or third options are not considered. In this case, it is assumed
that the data stored within the MapReduce object is already in the form that would be produced by the map()
method that would read the input from one or more file or directory names.

Second, the inputN can be the path name of a file or directory. Third, it can be a variable defined elsewhere in the
OINK input script that contains one or more strings. In the third case inputN should be specified as v_name,
where name is the name of the variable. All the different styles of variables (except equal−style) store strings; see
the variable command for details. Also note that there is a command−line option −var or −v which can be
specified when OINK is executed to store a list of strings in an index−style variable. The strings are treated as a
list of file or directory names. Thus in both the first or second case the effect is that a list of one or more
file/directory names is passed to the command. The command creates a temporary, unnamed MR−MPI object and
invokes a map() method within it, as specified in the code of the command class, using the list of file/directory
names as input.

There are several options available which influence how the list of strings specified in the input script are
converted into actual file/directory paths passed to the map() method. This include wildcard charcters "%" and
"*". See the input command for details.

Each required ouptut definition is a pair of arguments: ouputN.file and outputN.ID. Either or both can be specified
as NULL if no output in that form is desired.

The outputN.file argument is the path name of a file. A map() or reduce() or scan() method, as specified in the
code of the command class, will be invoked which will write data to that file when the command is finished. A
processor−ID (0 to Nprocs−1) will be appended to the filename, so that when running on multiple processors,
multiple files will be created.

If the specfied path name does not entirely exist, additional directories in the path name will be created as needed.
Also, there are several options available which influence how the file name specified in the input script is
converted into the file name actually opened by OINK and written to by the map(), reduce(), or scan() method.
This include wildcard charcters "%" and "*". See the output command for details.

The outputN.ID argument is the ID of an MR−MPI object which wraps a MapReduce object. The code in the
command class will have created or altered the MR−MPI object and its associated MapReduce object and
populated it with data. As a final step, the specified ID is assigned to that MR−MPI object. If the ID is already in
use, then the name is removed from the other MR−MPI object. This means that if an outputN.ID is the same as an
inputN to the command then the output will effectively overwrite that input.

When the command completes, named MR−MPI objects persist so that they can be used in subsequent input
script commands. All unnamed MR−MPI objects are deleted.

When any named command is executed, its elapsed execution time is stored internally by OINK. This value can
be accessed by the keyword "time" in an equal−style variable and printed out in the following manner:

variable t equal time
rmat 10 8 0.25 0.25 0.25 0.25 0.0 12345 −o tmp.rmat NULL
print "Time for RMAT generation = $t"

Related commands:

32

MR−MPI library commands, mr, MR−MPI library documentation, how to write named commands, input, output

33

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

degree command

Syntax:

degree dupflag −i in1 −o out1.file out1.mr

dupflag = 1/2 for counting edge once/twice•
in1 = graph edges: Key = Vi Vj, Value = NULL•
out1 = degree of each vertex: Key = Vi, Value = degree•

Examples:

degree 1 −i mrv −o degree.list NULL

Description:

This is a named command which calculates the degree of each vertex in a graph.

If the dupflag is 2, then each edge increments the degree of both of its vertices. If the dupflag is 1, then each edge
only increments the degree of the first of its vertices. The former is usually more approrpriate for undirected
graphs; the latter for directed graphs, in which case the out−degree of each vertex is being calculated.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

In1 stores a set of edges. No assumption is made about duplicates or self edges, i.e. (Vi,Vj) may appear multiple
times, both (Vi,Vj) or (Vj,Vi) may appear, as may (Vi,Vi). The input is unchanged by this command.

Out1 will store the degree count of each vertex.

Related commands:

neighbor, degree_stats

34

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

degree_stats command

Syntax:

degree_stats dupflag −i in1

dupflag = 1/2 for counting edge once/twice in1 = graph edges: Key = Vi Vj, Value = NULL

Examples:

degree_stats 2 −i edges

Description:

This is a named command which calculates and prints out the degree statistics of an undirected graph. For each
degree d, one line is printed to the screen with the number of vertices of degree d. This is done in sorted order.

If the dupflag is 2, then each edge increments the degree of both of its vertices. If the dupflag is 1, then each edge
only increments the degree of the first of its vertices. The former is usually more approrpriate for undirected
graphs; the latter for directed graphs, in which case the out−degree of each vertex is being calculated. The latter
can also be useful if the graph represents a sparse matrix and you want the statistics on non−zeroes in each row of
the matrix.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

In1 stores a set of edges. No assumption is made about duplicates or self edges, i.e. (Vi,Vj) may appear multiple
times, both (Vi,Vj) or (Vj,Vi) may appear, as may (Vi,Vi). The input is unchanged by this command.

This command produces no output.

Statistics on the degree count of each vertex will be printed to the screen in sorted order.

Related commands:

degree

35

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

degree_weight command

Syntax:

degree_weight dupflag −i in1 −o out1.file out1.mr

dupflag = 1/2 for counting edge once/twice•
in1 = graph edges: Key = Vi Vj, Value = NULL•
out1 = degree of each vertex: Key = Vi, Value = degree•

Examples:

degree 1 −i mrv −o degree.list NULL

Description:

This is a named command which calculates the degree of each vertex in a graph.

If the dupflag is 2, then each edge increments the degree of both of its vertices. If the dupflag is 1, then each edge
only increments the degree of the first of its vertices. The former is usually more approrpriate for undirected
graphs; the latter for directed graphs, in which case the out−degree of each vertex is being calculated.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

In1 stores a set of edges. No assumption is made about duplicates or self edges, i.e. (Vi,Vj) may appear multiple
times, both (Vi,Vj) or (Vj,Vi) may appear, as may (Vi,Vi). The input is unchanged by this command.

Out1 will store the degree count of each vertex.

Related commands:

neighbor, degree_stats

36

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

echo command

Syntax:

echo style

style = none or screen or log or both•

Examples:

echo both
echo log

Description:

This command determines whether OINK echoes each input script command to the screen and/or log file as it is
read and processed. If an input script has errors, it can be useful to look at echoed output to see the last command
processed.

The command−line switch −echo can be used in place of this command.

The default is echo log, i.e. commands are echoed to the log file.

Related commands: none

37

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

edge_upper command

Syntax:

edge_upper −i in1 −o out1.file out1.mr

in1 = graph edges: Key = Vi Vj, Value = NULL•
out1 = graph edges: Key = Vi Vj, Value = NULL•

Examples:

edge_upper −i tmp.matrix −o mre

Description:

This is a named command which eliminates duplicate and self−edges from a graph. A duplicate edge is when both
(Vi,Vj) or (Vj,Vi) appear in the edge list. A self−edge is when (Vi,Vi) appears.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

In1 stores a set of edges, which may have duplicates or self edges. The input is unchanged by this command.

Out1 will store the edges of a new graph which has the duplicates and self edges removed. In the new graph, Vi <
Vj for every edge, so it also represents the non−zeroes of an upper−triangular matrix.

Related commands:

rmat

38

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

histo command

Syntax:

histo −i in1 −o out1.file out1.mr

in1 = anthing: Key = key, Value = value•
out1 = frequency count of each key: Key = key, Value = count•

Examples:

histo −i mrdata −o NULL out1.mr

Description:

This is a named command which calculates the frequency of key occurrence in an input set of key/values.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

In1 is any MR−MPI object containing key/value pairs. The input is unchanged by this command.

In1 cannot be specified as input from file(s) since no assumption is made about how the files store key/value
pairs. You would need to read the files into a MR−MPI object as a pre−processing step, using a map() function
you provide, before passing that object to the histo command as an input.

Out1 will store the frequency count of all unique keys.

Out1 cannot be specified as output to a file since no assumption is made about how the key should be formatted
for output. You would need to write the files from the output MR−MPI object as a post−processing step, using a
map() or scan() function you provide.

Statistics on the count of each key will be printed to the screen in sorted order.

Related commands:

degree_stats, wordfreq

39

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

if command

Syntax:

if boolean then t1 t2 ... elif boolean f1 f2 ... elif boolean f1 f2 ... else e1 e2 ...

boolean = a Boolean expression evaluated as TRUE or FALSE (see below)•
then = required word•
t1,t2,...,tN = one or more OINK commands to execute if condition is met, each enclosed in quotes•
elif = optional word, can appear multiple times•
f1,f2,...,fN = one or more OINK commands to execute if elif condition is met, each enclosed in quotes
(optional arguments)

•

else = optional argument•
e1,e2,...,eN = one or more OINK commands to execute if no condition is met, each enclosed in quotes
(optional arguments)

•

Examples:

if "${steps} > 1000" then exit
if "$x <= $y" then "print X is smaller = $x" else "print Y is smaller = $y"
if "(${flag} == 0) || ($n <1000)" then & "graph reduce myfunc" &elif ${flag} == 1 & "graph reduce myfunc2" &else & "graph kmv_stats 2" & "print 'Elapsed time = $t'"
if "${niter} > ${niter_previous}" then "jump file1" else "jump file2"

Description:

This command provides an in−then−else capability within an input script. A Boolean expression is evaluted and
the result is TRUE or FALSE. Note that as in the examples above, the expression can contain variables, as
defined by the variable command, which will be evaluated as part of the expression. Thus a user−defined formula
that reflects the current state of the simulation can be used to issue one or more new commands.

If the result of the Boolean expression is TRUE, then one or more commands (t1, t2, ..., tN) are executed. If it is
FALSE, then Boolean expressions associated with successive elif keywords are evaluated until one is found to be
true, in which case its commands (f1, f2, ..., fN) are executed. If no Boolean expression is TRUE, then the
commands associated witht the else keyword, namely (e1, e2, ..., eN), are executed. The elif and else keywords
and their associated commands are optional. If they aren't specified and the initial Boolean expression is FALSE,
then no commands are executed.

The syntax for Boolean expressions is described below.

Each command (t1, f1, e1, etc) can be any valid OINK input script command. If the command is more than one
word, it must enclosed in quotes, so it will be treated as a single argument, as in the examples above.

IMPORTANT NOTE: If a command itself requires a quoted argument (e.g. a print command), then double and
single quotes can be used and nested in the usual manner, as in the examples above and below. See this section of
the manual for more details on using quotes in arguments. Only one of level of nesting is allowed, but that should
be sufficient for most use cases.

Note that by using the line continuation character "the if command can be spread across many lines, though it is
still a single command:

if "$a <$b" then & "print 'Minimum value = $a'" & "graph ..." &else &

40

http://www.sandia.gov/~sjplimp/mapreduce.html

 'print "Minimum value = $b"' & "graph ..."

Note that if one of the commands to execute is an invalid OINK command, such as "exit" in the first example
above, then executing the command will cause OINK to halt.

Note that by jumping to a label in the same input script, the if command can be used to break out of a loop. See
the variable delete command for info on how to delete the associated loop variable, so that it can be re−used later
in the input script.

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop when a
condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 ...
 if '$b > 2' then "print 'Jumping to another script'" "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

The Boolean expressions for the if and elif keywords have a C−like syntax. Note that each expression is a single
argument within the if command. Thus if you want to include spaces in the expression for clarity, you must
enclose the entire expression in quotes.

An expression is built out of numbers:

0.2, 100, 1.0e20, −15.4, etc

and Boolean operators:

A == B, A != B, A <B, A <= B, A > B, A >= B, A &B, A || B, !A

Each A and B is a number or a variable reference like $a or ${abc}, or another Boolean expression.

If a variable is used it must produce a number when evaluated and substituted for in the expression, else an error
will be generated.

Expressions are evaluated left to right and have the usual C−style precedence: the unary logical NOT operator "!"
has the highest precedence, the 4 relational operators "", and ">=" are next; the two remaining relational operators
"==" and "!=" are next; then the logical AND operator " and finally the logical OR operator "||" has the lowest
precedence. Parenthesis can be used to group one or more portions of an expression and/or enforce a different
order of evaluation than what would occur with the default precedence.

The 6 relational operators return either a 1.0 or 0.0 depending on whether the relationship between x and y is
TRUE or FALSE. The logical AND operator will return 1.0 if both its arguments are non−zero, else it returns 0.0.
The logical OR operator will return 1.0 if either of its arguments is non−zero, else it returns 0.0. The logical NOT
operator returns 1.0 if its argument is 0.0, else it returns 0.0.

41

The overall Boolean expression produces a TRUE result if the result is non−zero. If the result is zero, the
expression result is FALSE.

Related commands:

variable, print

42

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

include command

Syntax:

include file

file = filename of new input script to switch to•

Examples:

include newfile
include in.run2

Description:

This command opens a new input script file and begins reading OINK commands from that file. When the new
file is finished, the original file is returned to. Include files can be nested as deeply as desired. If input script A
includes script B, and B includes A, then OINK could run for a long time.

If the filename is a variable (see the variable command), different processor partitions can run different input
scripts.

Related commands:

variable, jump

43

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

input command

Syntax:

input N keyword value ...

N = which input to set options for•
one or more keyword/value pairs may be appended

keyword = prepend or substitute or multi or mmode or recurse or self or readfile or nmap or sepchar or sepstr or delta
prepend value = string to prepend to file/directory path names
substitute value = 0 or 1 = how to substitute for "%" in path name
multi value = Nmulti = multiplicity of path names to generate
mmode value = 0 or 1 or 2 = which style of map() method to invoke
recurse value = 0 or 1 = passed to map() method
self value = 0 or 1 = passed to map() method
readfile value = 0 or 1 = passed to map() method
nmap value = number of map tasks = passed to map() method
sepchar value = single character = passed to map() method
sepstr value = string = passed to map() method
delta value = Ndelta = passed to map() method

•

Examples:

input 1 multi 4
input 2 self 1 substitute 4 prepend /scratch%/hadoop−datastore/local_files

Description:

This command is used to control the reading of input data that a named command performs as part of its input. It
does this by setting options on specific inputs to named commands. The options set by this command are in effect
for ONLY the next named commmand. After a named command is invoked, it restores all input options to their
default values. Note that all of the options which can be set by this command have default values, so you don't
need to set those you don't want to change.

As described on the named command doc page, a named command may specify one or more input descriptors. If
the descriptor is one or more file or directory names, then each of them is converted into a list of strings which is
passed to a map() method of a created MR−MPI object, along with various other arguments needed by the map()
method. The purpose of the input command is to give you control over how that conversion takes place and what
the values of those additional arguments are.

The N value corresponds to a particular input descriptor, as defined by the named command. It should be an
integer from 1 to Ninput, where Ninput is the number of input descriptors the command requires. The input
command can be used multiple times with the same N to specify different parameters, e.g. one at a time.

The remaining arguments are pairs of keywords and values. One or more can be specified.

The prepend, substitute, and multi keywords alter the file and directory path names specified with an input
descriptor in a named command.

IMPORTANT NOTE: The prepend, substitute, and multi keywords are applied to each file of directory name in
the list of such names that the named command uses in its input descriptor.

44

http://www.sandia.gov/~sjplimp/mapreduce.html

IMPORTANT NOTE: The prepend and substitute keywords can also be set globally so that their values will be
applied to all input descriptors of all named commands. See the set command for details. If an input command is
not used to override the global value, then the global value is used by the named command.

The prepend keyword specifies a path name to prepend to each input file or directory name specified with the
named command. The prepend string is presumed to be a directory name and should be specified without the
trailing "/" character, since that is added when the prepending is done.

Input file or directory names specified with the named command can contain either or both of two wildcard
characters: "%" or "*". Only the first occurrence of each wildcard character is replaced.

If the substitute keyword is set to 0, then a "%" is replaced by the processor ID, 0 to Nprocs−1. If it is set to N > 0,
then "%" is replaced by (proc−ID % N) + 1. I.e. for 8 processors and N = 4, then the 8 processors replace the "%"
with (1,2,3,4,1,2,3,4). This can be useful for multi−core nodes where each core has its own local disk. E.g. you
wish each core to read data from one disk.

If a "*" appears, then the file or directory name is duplicated N times where N is the value set by the multi
keyword. In each of the N duplicates, the "*" is replaced by the number 1 to N. Again, this can be useful for
multi−core nodes where each core has its own local disk. E.g. you want a single core to read data from each of
several local disks on the node, presumably because you have launched an MPI job so that it runs on a single core
per node.

The mmode keyword stands for "map mode" and determines what form of the MR−MPI library map() method is
invoked by the named command. It is up to the coding of the "named command" to determine which of these
forms of data input it supports. There are 3 variants of the map() method which involve file input:

mmode = 0 = map(int nstr, char **strings, int self, int recurse, int readfile, void (*mymap)(), void *ptr)
mmode = 1 = map(int nmap, int nstr, char **strings, int recurse, int readfile, char sepchar, int delta, void (*mymap)(), void *ptr)
mmode = 2 = map(int nmap, int nstr, char **strings, int recurse, int
readfile, char *sepstr, int delta, void (*mymap)(), void *ptr)

The "nstr" and "strings" arguments to these methods are created by OINK, using the settings described above. The
remaining arguments are set by the keywords of the input command, as needed. Note that some keywords have no
meaning for certain map() method variants, in which case they are simply ignored.

The meaning of the self, recurse, readfile, nmap, sepchar, sepstr, and delta keywords is the same as explained on
the doc page for the map() method of the MR−MPI library. The value for the sepchar keyword will be treated as a
single character. The value for the sepstr keyword will be treated as a string.

Related commands:

output, named commands, how to write named commands, set

Defaults:

The option defaults are prepend = NULL, substitute = 0, multi = 1, mmode = 0, recurse = 0, self = 0, readfile = 0,
nmap = 0, sepchar = newline character, sepstr = newline, delta = 80.

45

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

jump command

Syntax:

jump file label

file = filename of new input script to switch to•
label = optional label within file to jump to•

Examples:

jump newfile
jump in.run2 runloop
jump SELF runloop

Description:

This command closes the current input script file, opens the file with the specified name, and begins reading
OINK commands from that file. Unlike the include command, the original file is not returned to, although by
using multiple jump commands it is possible to chain from file to file or back to the original file.

If the word "SELF" is used for the filename, then the current input script is re−opened and read again.

IMPORTANT NOTE: The SELF option is not guaranteed to work when the current input script is being read
through stdin (standard input), e.g.

lmp_g++ <in.script

since the SELF option invokes the C−library rewind() call, which may not be supported for stdin on some
systems. This can be worked around by using the −in command−line argument or the −var command−line
argument to pass the script name as a variable to the input script In the latter case, the "fname" variable could be
used in place of SELF. E.g.

lmp_g++ −in in.script

lmp_g++ −var fname n.script <in.script

The 2nd argument to the jump command is optional. If specified, it is treated as a label and the new file is scanned
(without executing commands) until the label is found, and commands are executed from that point forward. This
can be used to loop over a portion of the input script, as in this example. These commands perform 10 runs, each
of 10000 steps, and create 10 dump files named file.1, file.2, etc. The next command is used to exit the loop after
10 iterations. When the "a" variable has been incremented for the tenth time, it will cause the next jump command
to be skipped.

variable a loop 10
label loop
dump 1 all atom 100 file.$a
run 10000
undump 1
next a
jump in.lj loop

46

http://www.sandia.gov/~sjplimp/mapreduce.html

If the jump file argument is a variable, the jump command can be used to cause different processor partitions to
run different input scripts. In this example, LAMMPS is run on 40 processors, with 4 partitions of 10 procs each.
An in.file containing the example variable and jump command will cause each partition to run a different
simulation.

mpirun −np 40 lmp_ibm −partition 4x10 −in in.file

variable f world script.1 script.2 script.3 script.4
jump $f

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop when a
condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if $b > 2 then "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

IMPORTANT NOTE: If you jump to a file and it does not contain the specified label, OINK will come to the end
of the file and exit.

Related commands:

variable, include, label, next

47

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

label command

Syntax:

label ID

ID = string used as label name•

Examples:

label xyz
label loop

Description:

Label this line of the input script with the chosen ID. Unless a jump command was used previously, this does
nothing. But if a jump command was used with a label argument to begin invoking this script file, then all
command lines in the script prior to this line will be ignored. I.e. execution of the script will begin at this line.
This is useful for looping over a section of the input script as discussed in the jump command.

Related commands: none

48

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

log command

Syntax:

log file

file = name of new logfile•

Examples:

log log.graph

Description:

This command closes the current OINK log file, opens a new file with the specified name, and begins logging
information to it. If the specified file name is none, then no new log file is opened.

If multiple processor partitions are being used, the file name should be a variable, so that different processors do
not attempt to write to the same log file.

The file "log.oink" is the default log file for a OINK run. The name of the initial log file can also be set by the
command−line switch −log. See this section for details.

The default OINK log file is named log.oink

Related commands: none

49

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

luby_find command

Syntax:

luby_find seed −i in1 −o out1.file out1.mr

seed = random number seed (positive integer)•
in1 = graph edges: Key = Vi Vj, Value = NULL•
out1 = minimal independent set: Key = Vi, Value = NULL•

Examples:

luby_find 982938 −i mre −o mis.list mis

Description:

This is a named command which computes a minimal independent set (MIS) of vertices for an undirected graph.
A MIS contains vertices which do not share an edge and to which no additional vertex can be added. For a given
graph there are typically many possible MIS's; the MIS that is computed is a function of the specified random
number seed. The MIS is found by Luby's algorithm, which is an interative method. The MapReduce version of
Luby's algorithm implemented by this command is discussed in the paper of (Plimpton).

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

In1 stores a set of edges, assumed to have no duplicates or self−edges. This means that either (Vi,Vj) or (Vj,Vi)
appears, but not both. Also (Vi,Vi) does not appear. The input is unchanged by this command.

Out1 will store the list of vertices in the MIS.

Related commands: none

(Luby) Luby, "A Simple Parallel Algorithm for the Maximal Independent Set Problem", SIAM J Computing, 15,
1036−1055 (1986).

(Plimpton) Plimpton and Devine, "MapReduce in MPI for Large−Scale Graph Algorithms", to appear in Parallel
Computing (2011).

50

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

mr command

Syntax:

mr MR−ID verbosity timer memsize outofcore

MR−ID = ID of new MR−MPI object to create•
verbosity = verbosity setting (optional)•
timer = timer setting (optional)•
memsize = memsize setting (optional)•
outofcore = outofcore setting (optional)•

Examples:

mr edge
mr edge 2
mr edge 1 1 16 0

Description:

Create a new MR−MPI object, which can be referenced by name elsewhere in your input script. In OINK, a
MR−MPI object is simply a thin wrapper on a MapReduce object created via the MR−MPI library. The MR−MPI
object has an ID which can be used elsewhere in the input script. For example it can be used as input to a named
command or in a MR−MPI library command.

The ID of an MR−MPI object can only contain alphanumeric characters and underscores.

When the underlying MapReduce object is created, it will have default settings as described here. Several of these
settings can be overridden by the 4 options listed above. If none of them are specified, then the default settings are
used. To reset one of the settings, you must specify all the settings that preceed it. E.g. if just two optional
arguments are used, they are the verbosity and timer settings.

Related commands:

MR−MPI library commands, named commands

51

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

library commands

Syntax:

MR−ID keyword args ...

MR−ID = ID of previously created MR object•
keyword = MR−MPI library function to invoke•
args = arguments to library function•

Examples:

mr edge
edge map/task 100 mymap
edge map/task 100 mymap 1
edge collate NULL
edge reduce myreduce
edge kv_stats 1
edge set timer 1

Description:

Invoke a MR−MPI library function directly on a previously created MR−MPI objects. In OINK, an MR−MPI
object is a thin wrapper on a MapReduce object created via the MR−MPI library. They can be created by the mr
command or can be output by a named command. Such an MR−MPI object has an ID which is the command
name used in the input script to trigger the library calls, e.g. "edge" in the examples above.

The keyword is the library function to invoke on the underlying MapReduce object wrapped by the MR−MPI
object. These have a one−to−one correspondence with the methods available in the MR−MPI library. Here is the
list of keywords and their arguments. The arguments used in the OINK input script correspond to the arguments
used by each library method. Arguments in parentheses are optional. More details are discussed below.

Keywords Arguments

delete none

copy MR2−ID

add MR2−ID

aggregate NULL or hash−function

broadcast root

clone none

close none

collapse type key

collate NULL of hash−function

compress reduce−function

convert none

gather nprocs

map/task nmap map−function (addflag)

map/char
nmap strings recurse readfile sepchar delta map−function
(addflag)

52

http://www.sandia.gov/~sjplimp/mapreduce.html

map/string
nmap strings recurse readfile sepstr delta map−function
(addflag)

map/mr MR2−ID map−function (addflag)

open none

print (file) (fflag) proc nstride kflag vflag

reduce reduce−function

scan/kv scan−function

scan/kmv scan−function

scrunch nprocs type key

sort_keys flag or compare−function

sort_values flag or compare−function

sort_multivalues flag or compare−function

kv_stats level

kmv_stats level

cummulative_stats level reset

set name value
The MR2−ID used as an argument to the "copy", "add", and "map/mr" keywords should be the ID of another
previously defined MR−MPI object.

IMPORTANT NOTE: The syntax for the copy keyword in an OINK script is as follows: MR−ID copy MR2−ID.
This creates a new MR−MPI object MR2−ID, which is a copy of the existing MR−MPI object MR−ID. The
MR2−ID object cannot already exist. This corresponds to the following C++ calling syntax for the copy() method
of the MR−MPI library, but note that the OINK syntax is somewhat reversed:

MapReduce *mr2 = mr−>copy();

The map−function, reduce−function, hash−function, compare−function, scan−function arguments to various
keywords are the names of functions that will be called back to by the MR−MPI library. Within OINK, these must
be names of functions defined in map_*.cpp, reduce_*.cpp, hash_*.cpp, compare_*,cpp, or scan_*.cpp files with
the appropriate function prototype. When you build OINK, these files are scanned, the function prototypes
extracted, and the style_map.h, style_reduce.h, style_hash.h, style_compare.h, style_scan.h files are created whcih
enables a function name you list in your input script to be recognized by OINK. Note that as new map(), reduce(),
etc functions are added to the OINK src directory, they automatically become avaiable to your script to use in
MR−MPI library commands. Thus you can use to OINK to accumulate a collection of useful map(), reduce(), etc
functions. These functions can also be used with named commands as discussed here.

Note that map() functions come in 4 different flavors, with different prototypes, as detailed here. Which you
should use depends on which map variant you invoke, i.e. map/task, map/char, map/string, or map/mr. Likewise,
scan() functions come in 2 different flavors, as detailed here, one for use with scan/kv and the other with
scan/kmv.

The "strings" argument to the map/char and map/string keywords can take one of two forms. It can be a single
filename or directory. If the latter, then the map() method in the MR−MPI library reads the files in the directory.
Or it can be a variable defined elsewhere in the OINK input script that contains one or more strings which are
passed to the map() method as a collection of strings. In this case the "strings" argument should be specified as
v_name, where name is the name of the variable. All the different styles of variables (except equal−style) store
strings; see the variable command for details. Also note that there is a command−line option −var or −v which can
be specified when OINK is executed to store a list of filenames in an index−style variable.

53

The sepchar and sepstr arguments to the map/char and map/string keywords should be a single character or a
string of characters.

The addflag argument to the various map keywords is optional. It should be 1 if you wish to add key/value pairs
to those already contained in a MapReduce object.

The type argument to the collapse and scrunch keywords should be one of the following: "int", "uint46",
"double", or "str". The key that follows will be converted into that data type to use as the key argument to the
MR−MPI library function.

The print keyword takes either 4 or 6 arguments. If 6 are used, the first two are a file name and file flag, the same
as is available with the print() method in the MR−MPI library.

The flag argument to the various sort keywords is an integer (e.g. 1 or −1) that can be used in place of a
compare−function. This is the same integer that the sort methods in the MR−MPI library takes as a valid
argument.

The set keyword takes a "name" and "value" argument. These can be any of the options that are valid to set for a
MapReduce object in the MR−MPI library, as discussed here. E.g. the command "edge verbosity 1" will set the
verbosity level to 1 in the MapReduce object wrapped by the MR−MPI object named "edge".

IMPORTANT NOTE: There is currently no way in OINK to pass a data pointer to the various MR−MPI library
functions that accept it, e.g. to map() or reduce(). When using the library from a programming language, such as
C++ or C, this is powerful option for passing extra information to the user callback map() or reduce() function.
We are still thinking about the best way to do this, at least in some limited fashion, from an OINK input script.

When any MR−MPI library command is executed, its elapsed execution time is stored internally by OINK. This
value can be accessed by the keyword "time" in an equal−style variable and printed out in the following manner:

variable t equal time
edge map/task 100 mymap
print "Time for map/task = $t"

Related commands:

named commands, mr, MR−MPI library documentation, map(), reduce(), etc functions

54

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

neigh_tri command

Syntax:

neigh_tri dirname −i input1 input2 −o out1.file out1.mr

dirname = directory name to create set of output files in, one per vertex•
input1 = graph neighbors: Key = Vi, Value = Vj Vk ...•
input2 = triangles: Key = Vi Vj Vk, Value = NULL•
out1 = neighbors + triangle edges of each vertex: Key = Vi, MultiValue = Vj Vk ... (Vj Vk) (Vm Vn) ...•

Examples:

neigh_tri myneigh −i mrn mrtri −o NULL mrnplus

Description:

This is a named command which calculates a list of edges associated with each vertex in an undirected graph,
which include all edges the vertex is in (its first neighbors) and also edges between pairs of its first neighbors
(triangle edges). This set of data is written to a file per vertex as a list of edges.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

Input1 stores a set of neighbors of each vertex. See the neighbor command, which can compute this data. Input2
stores a set of triangles. See the tri_find command, which can compute this data. The two inputs are unchanged by
this command.

These 2 data sets are merged to identify the edges that exist between pairs of neighbors of each vertex. This
information is written to a file per vertex. The name of each file is dirname/Vi where dirname is the specified
argument (a directory name), and Vi is the vertex ID. Each file will contain a list of edges, one per line, written as
Vm Vn. For some of the Vm will equal Vi, which means they are edges containing Vi, i.e. they are the first
neighbors of Vi. Other edges will have Vm != Vi. These are edges between pairs of first neighbors.

Out1 will store the neighbor and triangle edge information as key/multivalue (KMV) pairs, not as key/value (KV)
pairs (the usual form of output).

Out1.file must be specified as NULL with the "−o" argument so that the output is only allowed as an MR−MPI
object, not as a file. This is because the file would contain data for all the vertices together. The equivalent info is
already output as one file per vertex, as described above.

NOTE: alter the neigh_tri.cpp code so that it uses the input dirname with expandpath() to apply the global
prepend and substitute settings ??

Related commands:

neighbor, tri_find

55

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

neighbor command

Syntax:

neighbor −i in1 −o out1.file out1.mr

in1 = graph edges: Key = Vi Vj, Value = NULL•
out1 = neighbors of each vertex: Key = Vi, Value = Vj Vk ...•

Examples:

degree −i mrv −o degree.list NULL

Description:

This is a named command which calculates the list of neighbors of each vertex in an undirected graph. A list of all
the vertices each vertex shares an edge with is calculated. These are the first neighbors of each vertex.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

In1 stores a set of edges, assumed to have no duplicates or self−edges. This means that either (Vi,Vj) or (Vj,Vi)
appears, but not both. Also (Vi,Vi) does not appear. The input is unchanged by this command.

Out1 will store the list of neighbor vertices for each vertex. The list is a single value in a key/value pair which is a
vector of vertex IDs, one after the other.

Related commands:

degree, neigh_tri

56

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

next command

Syntax:

next variables

variables = one or more variable names•

Examples:

next x
next a t x myTemp

Description:

This command is used with variables defined by the variable command. It assigns the next value to the variable
from the list of values defined for that variable by the variable command. Thus when that variable is subsequently
substituted for in an input script command, the new value is used.

See the variable command for info on how to define and use different kinds of variables in OINK input scripts. If
a variable name is a single lower−case character from "a" to "z", it can be used in an input script command as $a
or $z. If it is multiple letters, it can be used as ${myTemp}.

If multiple variables are used as arguments to the next command, then all must be of the same variable style:
index, loop, universe, or uloop. An exception is that universe− and uloop−style variables can be mixed in the
same next command.

All the variables specified with the next command are incremented by one value from their respective list or
values. String− or equal− or world−style variables cannot be used with the the next command, since they only
store a single value.

When any of the variables in the next command has no more values, a flag is set that causes the input script to
skip the next jump command encountered. This enables a loop containing a next command to exit. As explained
in the variable command, the variable that has exhausted its values is also deleted. This allows it to be used and
re−defined later in the input script.

When the next command is used with index− or loop−style variables, the next value is assigned to the variable for
all processors. When the next command is used with universe− or uloop−style variables, the next value is
assigned to whichever processor partition executes the command first. All processors in the partition are assigned
the same value. Running OINK on multiple partitions of processors via the "−partition" command−line switch is
described in this section of the manual. Universe− and uloop−style variables are incremented using the files
"tmp.oink.variable" and "tmp.oink.variable.lock" which you will see in your directory during such a OINK run.

Here is an example of running a series of simulations using the next command with an index−style variable. If this
input script is named in.graph, 8 simulations would be run using data files from directories run1 thru run8.

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
graph −i data.graph
shell cd ..
clear
next d

57

http://www.sandia.gov/~sjplimp/mapreduce.html

jump in.graph

If the variable "d" were of style universe, and the same in.graph input script were run on 3 partitions of
processors, then the first 3 simulations would begin, one on each set of processors. Whichever partition finished
first, it would assign variable "d" the 4th value and run another simulation, and so forth until all 8 simulations
were finished.

Jump and next commands can also be nested to enable multi−level loops. For example, this script will run 15
simulations in a double loop.

variable i loop 3
 variable j loop 5
 clear
 ...
 print Running simulation $i.$j
 graph −i data.polymer.ij
 next j
 jump in.script
next i
jump in.script

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop when a
condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if $b > 2 then "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

Related commands:

jump, include, shell, variable,

58

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

output command

Syntax:

output N keyword value ...

N = which output to set options for•
one or more keyword/value pairs may be appended keyword = prepend or substitute prepend value =
string to prepend to file path names substitute value = 0 or 1 = how to substitute for "%" in path name

•

Examples:

output 1 substitue 4
output 2 substitute 4 prepend /scratch%/hadoop−datastore/local_files

Description:

This command is used to control the writing of data that a named command performs as part of its output. It does
this by setting options on specific outputs to named commands. The options set by this command are in effect for
ONLY the next named commmand. After a named command is invoked, it restores all output options to their
default values. Note that all of the options which can be set by this command have default values, so you don't
need to set those you don't want to change.

As described on the named command doc page, a named command may specify one or more output descriptors.
Each descriptor is a pair of arguemnts, the first of which is an output filename (if it is not specified as NULL).
OINK converts the specified argument into an actual filename which is opened by each processor. The purpose of
the output command is to give you control over how that conversion takes place.

The N value corresponds to a particular output descriptor, as defined by the named command. It should be an
integer from 1 to Noutput, where Noutput is the number of output descriptors the command requires. The output
command can be used multiple times with the same N to specify different parameters, e.g. one at a time.

The remaining arguments are pairs of keywords and values. One or more can be specified.

The prepend and substitute keywords alter the file and directory path names specified with the filename of an
output descriptor in a named command.

IMPORTANT NOTE: The prepend and substitute keywords can also be set globally so that their values will be
applied to all output descriptors of all named commands. See the set command for details. If an output command
is not used to override the global value, then the global value is used by the named command.

The prepend keyword specifies a path name to prepend to the output file specified with the named command. The
prepend string is presumed to be a directory name and should be specified without the trailing "/" character, since
that is added when the prepending is done.

Ouptut file or directory names specified with the named command can contain either or both of two wildcard
characters: "%" or "*". Only the first occurrence of each wildcard character is replaced.

If the substitute keyword is set to 0, then a "%" is replaced by the processor ID, 0 to Nprocs−1. If it is set to N > 0,
then "%" is replaced by (proc−ID % N) + 1. I.e. for 8 processors and N = 4, then the 8 processors replace the "%"

59

http://www.sandia.gov/~sjplimp/mapreduce.html

with (1,2,3,4,1,2,3,4). This can be useful for multi−core nodes where each core has its own local disk. E.g. you
wish each core to write data to one disk.

IMPORTANT NOTE: The proessor ID is also added as a suffix to the specified output file by each processor, so
that one output file per processor is generated. This is in addition to any replacement of a "%" wildcard character.

If a "*" appears, then it is replaced with a 1. Unlike for input files, this is not a particularly useful wildcard for
output files.

Related commands:

input, named commands, how to write named commands, set

Defaults:

The option defaults are prepend = NULL, substitute = 0, multi = 1, mmode = 0, recurse = 0, self = 0, readfile = 0,
nmap = 0, sepchar = newline character, sepstr = newline, delta = 80.

60

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

pagerank command

Syntax:

pagerank tolerance Nmax alpha −i in1 −o out1.file out1.mr

tolerance = stopping tolerance on PageRank iterations•
Nmax = max # of matrix−vector iterations to allow•
alpha = ???•
in1 = graph edges: Key = Vi Vj, Value = weight•
out1 = distance to each vertex: Key = Vi, Value = distance•

Examples:

pagerank 0.01 50 0.3 −i mre −o prank.txt NULL

Description:

This is a named command which computes the PageRank numeric score for vertices in a directed graph. The
PageRank of a vertex is a measure of how "important" it is in the graph, based on what vertices point to it, and the
PageRank of those vertices. If the graph represents WWW pages linked to each other, then this is part of how
Google ranks the relative importance of pages it shows you as the result of a search. See this Google site for more
information.

The PageRank calculation is performed via an iterative matrix−vector multiply operation, where the graph can be
though of as a sparse matrix. The MapReduce version of this PageRank implementation is described in the paper
of (Plimpton).

Describe what alpha and tolerance and maxiter do.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

In1 stores a set of edges with weights, assumed to have no duplicates, meaning that (Vi,Vj) only appears once.
Each edge is directed in the sense that Vi points to Vj. The weight is effectively the non−zero value of the (Vi,Vj)
element of the matrix. Typically it should be 1/D where D is the out−degree of Vi, but this is not required. The
input is unchanged by this command.

Out1 will store the list of vertices and the numeric rank of each vertex.

Related commands: none

(Google) Some citation to a Google paper or WWW site, explaining PageRank, (2005).

(Plimpton) Plimpton and Devine, "MapReduce in MPI for Large−Scale Graph Algorithms", to appear in Parallel
Computing (2011).

61

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

print command

Syntax:

print str

str = text string to print, which may contain variables•

Examples:

print "Done with first stage" print "Elapsed time = $t secs on $p procs"

Description:

Print a text string to the screen and logfile. One line of output is generated. If the string has white space in it
(spaces, tabs, etc), then you must enclose it in quotes so that it is treated as a single argument. If variables are
included in the string, they will be evaluated and their current values printed.

See the variable command for a description of various kinds of variables, any of which can be used with the print
command. Note that there are keywords for the number of processors and elapsed time for a command or
MR−MPI library call which can be accessed with variables, e.g.

variable t equal time
variable p equal nprocs
print "Elapsed time = $t secs on $p procs"

Related commands:

variable

62

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

rmat command

rmat2 command

Syntax:

rmat N Nz a b c d fraction seed −o out1.file out1.mr
rmat2 N Nz a b c d fraction seed −o out1.file out1.mr

N = order of matrix, 2^N = number of rows in matrix•
Nz = average # of non−zeroes per row, Nz * 2^N = total # of non−zeroes•
a,b,c,d = R−MAT parameters which sum to 1.0•
fraction = R−MAT twiddle factor•
seed = random number seed (positive integer)•
out1 = graph edges: Key = Vi Vj, Value = NULL•

Examples:

rmat 20 8 0.45 0.25 0.25 0.05 0.0 284958 −o NULL mre
rmat2 20 8 0.45 0.25 0.25 0.05 0.0 284958 −o tmp.rmat NULL

Description:

These are named commands which generate a sparse random matrix via the procedure defined for R−MAT
matrices, as discussed in the paper by (Chakrabarti). Such matrices are often used to represent graphs where the
vertices are numbered 1 to Nrows, and the non−zero matrix entries represent edges. The number of rows and
non−zero entries are determined by the specified N and Nz arguments.

Depending on the choice of the R−MAT parameters the degree distribution of the resulting graph can be roughly
uniform or highly skewed, which is useful in modeling different kind of graphs, e.g. Internet connectivity. The
a,b,c,d parameters must sum to 1.0 and represent weighting for the 4 different quadrants of the matrix. As
non−zero entries are generated, they are assigned to each quadrant in a recursive manner using the a,b,c,d
weightings and a random number generator. A fraction value of 0.0 means the a,b,c,d weightings are used as−is.
A fraction value > 0.0 but < 1.0 means the weightings are randomly twiddled at each iteration of the recursion.

The MapReduce algorithms used for performing the R−MAT generation are described in the paper by (Plimpton).
The rmat command implements the first of the two algorithms discussed in the paper. The rmat2 command
implements the second of the two algorithms.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

These commands take no inputs.

Out1 will store the list of edges of the R−MAT graph, or equivalently, the I,J indices of non−zeroes in the matrix.
There will be exactly Nz * 2^N entries in out1. This may include some duplicate or self−edges. A duplicate edge
is when both (Vi,Vj) or (Vj,Vi) appear. A self−edge is when (Vi,Vi) appears. If desired, these can be removed by
further processing; see the edge_upper command.

Related commands:

63

http://www.sandia.gov/~sjplimp/mapreduce.html

edge_upper

(Chakrabarti) Chakrabarti, Zhan, Faloutsos, "R−MAT: A recursive model for graph mining", in SIAM Data
Mining (2004).

(Plimpton) Plimpton and Devine, "MapReduce in MPI for Large−Scale Graph Algorithms", to appear in Parallel
Computing (2011).

64

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

set command

Syntax:

set keyword value ...

one or more keyword/value pairs may be appended•
keyword = verbosity or timer or memsize or outofcore or scratch or prepend or substitute

verbosity value = setting for created MapReduce objects
timer value = setting for created MapReduce objects
memsize value = setting for created MapReduce objects
outofcore value = setting for created MapReduce objects
minpage value = setting for created MapReduce objects
maxpage value = setting for created MapReduce objects
freepage value = setting for created MapReduce objects
zeropage value = setting for created MapReduce objects
scratch value = setting for created MapReduce objects
prepend value = string to prepend to file/directory path names
substitute value = 0 or 1 = how to substitute for "%" in path name

•

Examples:

set verbosity 2 set verbosity 1 timer 1 memsize 16 set scratch /tmp/mr set prepend /scratch%/data substitute 1

Description:

This command sets global settings which are used in the creation of MR−MPI objects and the underlying
MapReduce objects they wrap. Note that many of these setting names have the same meaning they do in the
MR−MPI library themselves, as discussed on this doc page.

The settings for the verbosity, timer, memsize. outofcore, minpage, maxpage, freepage, and zeropage keywords
are used by the mr command creates a MapReduce object to set its attributes. Note that the mr command itself can
override several of these global settings.

Named commands can also create MapReduce objects, either when inputting and outputting data, or when the
run() method in the named command class invokes certain methods, like create_mr() or copy_mr(). Each time a
new MapReduce object is created, these same global settings are applied to it. See this doc page for more
discussion of the input/output options and these methods.

The scratch keyword is a directory pathname which all MapReduce objects will use for writing temporary files
when they operate in out−of−core mode. Every MapReduce object created by OINK will have its scratch
directory set to this value, via the fpath() call described on this doc page

The prepend and substitute keywords affect how file and directory names are interpreted by OINK. File and
directory names are used as input and output options to named commands via the "−i" and "−o" arguments in an
input script. Before these path names are passed to the MR−MPI library, e.g. as part of a map() method, they can
have a directory name prepended to them, and "%" characters in the path name substituted for with a processor
ID. This is to enable flexible options for input/output of different files by different processors.

If the prepend keyword is set, its value should be a directory name (without the trailing "/"). This will be
prepended to every input and output pathname used by OINK, including the scratch directory noted above. This

65

http://www.sandia.gov/~sjplimp/mapreduce.html

global setting can be overridden for a single input or output of the next−executed named command by setting the
same prepend keyword in the input or output command.

Input file or directory names can contain the wildcard character "%". Only the first occurrence of the wildcard
character is replaced.

If the substitute keyword is set to 0, then a "%" is replaced by the processor ID, 0 to Nprocs−1. If it is set to N > 0,
then "%" is replaced by (proc−ID % N) + 1. I.e. for 8 processors and N = 4, then the 8 processors replace the "%"
with (1,2,3,4,1,2,3,4). This can be useful for multi−core nodes where each core has its own local disk. E.g. you
wish each core to read data from one disk.

As with the prepend keyword, this substitution rule will be applied to every input and output pathname used by
OINK, including the scratch directory noted above. This global setting can be overridden for a single input or
output of the next−executed named command by setting the same substitute keyword in the input or output
command.

Related commands:

input, output, named commands, MR−MPI library commands, Section_commands

Defaults:

The setting defaults are the same as for the MR−MPI library itself, namely verbosity = 0, timer = 0, memsize =
64, outofcore = 0, minpage = 0, maxpage = 0, freepage = 1, zeropage = 0, scratch = ".". There are additional
default values: prepend = NULL, and substitute = 0.

66

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

shell command

Syntax:

shell style args

style = cd or mkdir or mv or rm or rmdir

cd arg = dir
 dir = directory to change to

mkdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to create

mv args = old new
 old = old filename
 new = new filename

rm args = file1 file2 ...
 file1,file2 = one or more filenames to delete

rmdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to delete

•

Examples:

shell cd sub1
shell cd ..
shell mkdir tmp1 tmp2 tmp3
shell rmdir tmp1
shell mv log.lammps hold/log.1
shell rm TMP/file1 TMP/file2

Description:

Execute a shell command. Only a few simple file−based shell commands are supported, in Unix−style syntax.
With the exception of cd, all commands are executed by only a single processor, so that files/directories are not
being manipulated by multiple processors.

The cd style executes the Unix "cd" command to change the working directory. All subsequent OINK commands
that read/write files will use the new directory. All processors execute this command.

The mkdir style executes the Unix "mkdir" command to create one or more directories.

The mv style executes the Unix "mv" command to rename a file and/or move it to a new directory.

The rm style executes the Unix "rm" command to remove one or more files.

The rmdir style executes the Unix "rmdir" command to remove one or more directories. A directory must be
empty to be successfully removed.

IMPORTANT NOTE: OINK does not detect errors or print warnings when any of these Unix commands execute.
E.g. if the specified directory does not exist, executing the cd command will silently not do anything.

Related commands: none

67

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

sssp command

sssp2 command

Syntax:

sssp N seed −i in1 −o out1.file out1.mr

sssp2 N seed −i in1 −o out1.file out1.mr

N = # of random starting vertices to choose•
seed = random number seed (positive integer)•
in1 = graph edges: Key = Vi Vj, Value = weight•
out1 = distance to each vertex: Key = Vi, Value = distance•

Examples:

sssp 10 12345 −i mre −o sssp.dist mrdist
sssp2 10 12345 −i mre −o sssp.dist mrdist

Description:

These are named commands which compute the shortest path to each vertex from a source vertex in an undirected
graph. This is called a single−source shortest−path (SSSP) calculation. The source vertex is selected randomly.
Each edge in the graph has a weight. The shortest−path distance to any other vertex is the minimum summed
weight of a list of consecutive edges that connect the two vertices.

This calculation involves a breadth−first search on the graph. The MapReduce algorithms used for performing the
SSSP calculation are described in the paper of (Plimpton). The sssp command implements the first of the two
algorithms discussed in the paper. The sssp2 command implements the second of the two algorithms.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

In1 stores a set of edges with floating point weights, assumed to have no duplicates or self−edges. This means that
either (Vi,Vj) or (Vj,Vi) appears, but not both. Also (Vi,Vi) does not appear. The input is unchanged by this
command.

Out1 will store the list of vertices and the distance to each vertex. If the specified N > 1, then this will be the
SSSP result for only the last source vertex randomly selected.

Related commands: none

(Plimpton) Plimpton and Devine, "MapReduce in MPI for Large−Scale Graph Algorithms", to appear in Parallel
Computing (2011).

68

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

tri_find command

Syntax:

tri_find −i in1 −o out1.file out1.mr

in1 = graph edges: Key = Vi Vj, Value = NULL•
out1 = triangles: Key = Vi Vj Vk, Value = NULL•

Examples:

tri_find −i mre −o tri.list mtri

Description:

This is a named command which enumerates all the triangles in an undirected graph. A triangle is a set of 3
vertices I,J,K for which the edges IJ, JK, IK all exist. The triangles are found via the MapReduce algorithm of
(Cohen) discussed in his paper and in the paper of (Plimpton). Note that even small graphs can have large
numbers of triangles if there are very high−degree vertices.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

In1 stores a set of edges, assumed to have no duplicates or self−edges. This means that either (Vi,Vj) or (Vj,Vi)
appears, but not both. Also (Vi,Vi) does not appear. The input is unchanged by this command.

Out1 will store the list of triangles.

Related commands: none

(Cohen) Cohen, "Graph Twiddling in a MapReduce World", Computing in Science and Engineering, 11, 29−41
(2009).

(Plimpton) Plimpton and Devine, "MapReduce in MPI for Large−Scale Graph Algorithms", to appear in Parallel
Computing (2011).

69

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

variable command

Syntax:

variable name style args ...

name = name of variable to define•
style = delete or index or loop or world or universe or uloop or string or equal or atom

delete = no args
index args = one or more strings
loop args = N

 N = integer size of loop, loop from 1 to N inclusive
loop args = N pad

 N = integer size of loop, loop from 1 to N inclusive
 pad = all values will be same length, e.g. 001, 002, ..., 100

loop args = N1 N2
 N1,N2 = loop from N1 to N2 inclusive

loop args = N1 N2 pad
 N1,N2 = loop from N1 to N2 inclusive
 pad = all values will be same length, e.g. 050, 051, ..., 100

world args = one string for each partition of processors
universe args = one or more strings
uloop args = N

 N = integer size of loop
uloop args = N pad

 N = integer size of loop
 pad = all values will be same length, e.g. 001, 002, ..., 100

string arg = one string
equal args = one formula containing numbers, keywords, math

 operations, variable references
 numbers = 0.0, 100, −5.4, 2.8e−4, etc
 constants = PI
 keywords = nprocs, time
 math operators = (), −x, x+y, x−y, x*y, x/y, x^y,
 x==y, x!=y, xy, x>=y, xx||y, !x
 math functions = sqrt(x), exp(x), ln(x), log(x),
 sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), atan2(y,x),
 random(x,y,z), normal(x,y,z), ceil(x), floor(x), round(x)
 ramp(x,y), stagger(x,y), logfreq(x,y,z), vdisplace(x,y), swiggle(x,y,z), cwiggle(x,y,z)
 variable references = v_name

•

Examples:

variable x index run1 run2 run3 run4 run5 run6 run7 run8
variable LoopVar loop $n
variable p equal nprocs
variable b1 equal 0.5*v_flag
variable b1 equal "10 + 0.5*v_flag"
variable foo myfile
variable x universe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
variable x uloop 15 pad
variable x delete

Description:

This command assigns one or more strings to a variable name for evaluation later in the input script or during a
simulation.

70

http://www.sandia.gov/~sjplimp/mapreduce.html

Variables can be used in several ways in OINK. A variable can be referenced elsewhere in an input script to
become part of a new input command. For variable styles that store multiple strings, the next command can be
used to increment which string is assigned to the variable. Variables of style equal store a formula which when
evaluated produces a single numeric value which can be output via the print command. Variables that store a
collection of strings can be used as input to a named command, e.g. to process a collection of filenames. See the
named command doc page for details.

In the discussion that follows, the "name" of the variable is the arbitrary string that is the 1st argument in the
variable command. This name can only contain alphanumeric characters and underscores. The "string" is one or
more of the subsequent arguments. The "string" can be simple text as in the 1st example above, it can contain
other variables as in the 2nd example, or it can be a formula as in the 3rd example. The "value" is the numeric
quantity resulting from evaluation of the string. Note that the same string can generate different values when it is
evaluated at different times during a simulation.

IMPORTANT NOTE: When the input script line that defines a variable of style equal is encountered, the formula
is NOT immediately evaluated and the result stored. See the discussion below about "Immediate Evaluation of
Variables" if you want to do this.

IMPORTANT NOTE: When a variable command is encountered in the input script and the variable name has
already been specified, the command is ignored. This means variables can NOT be re−defined in an input script
(with 2 exceptions, read further). This is to allow an input script to be processed multiple times without resetting
the variables; see the jump or include commands. It also means that using the command−line switch −var will
override a corresponding index variable setting in the input script.

There are two exceptions to this rule. First, variables of style string and equal ARE redefined each time the
command is encountered. This allows these style of variables to be redefined multiple times in an input script. In a
loop, this means the formula associated with an equal−style variable can change if it contains a substitution for
another variable, e.g. $x.

Second, as described below, if a variable is iterated on to the end of its list of strings via the next command, it is
removed from the list of active variables, and is thus available to be re−defined in a subsequent variable
command. The delete style does the same thing.

This section of the manual explains how occurrences of a variable name in an input script line are replaced by the
variable's string. The variable name can be referenced as $x if the name "x" is a single character, or as
${LoopVar} if the name "LoopVar" is one or more characters.

As described below, for variable styles index, loop, universe, and uloop, which string is assigned to a variable can
be incremented via the next command. When there are no more strings to assign, the variable is exhausted and a
flag is set that causes the next jump command encountered in the input script to be skipped. This enables the
construction of simple loops in the input script that are iterated over and then exited from.

As explained above, an exhausted variable can be re−used in an input script. The delete style also removes the
variable, the same as if it were exhausted, allowing it to be redefined later in the input script or when the input
script is looped over. This can be useful when breaking out of a loop via the if and jump commands before the
variable would become exhausted. For example,

label loop
variable a loop 5
print "A = $a"
if $a > 2 then "jump in.script break"
next a
jump in.script loop
label break

71

variable a delete

For the index style, one or more strings are specified. Initially, the 1st string is assigned to the variable. Each time
a next command is used with the variable name, the next string is assigned. All processors assign the same string
to the variable.

Index style variables with a single string value can also be set by using the command−line switch −var; see this
section for details.

The loop style is identical to the index style except that the strings are the integers from 1 to N inclusive, if only
one argument N is specified. This allows generation of a long list of runs (e.g. 1000) without having to list N
strings in the input script. Initially, the string "1" is assigned to the variable. Each time a next command is used
with the variable name, the next string ("2", "3", etc) is assigned. All processors assign the same string to the
variable. The loop style can also be specified with two arguments N1 and N2. In this case the loop runs from N1
to N2 inclusive, and the string N1 is initially assigned to the variable.

For the world style, one or more strings are specified. There must be one string for each processor partition or
"world". See this section of the manual for information on running OINK with multiple partitions via the
"−partition" command−line switch. This variable command assigns one string to each world. All processors in the
world are assigned the same string. The next command cannot be used with equal style variables, since there is
only one value per world. This style of variable is useful when you wish to perform different calculations on
different partitions.

For the universe style, one or more strings are specified. There must be at least as many strings as there are
processor partitions or "worlds". See this page for information on running OINK with multiple partitions via the
"−partition" command−line switch. This variable command initially assigns one string to each world. When a next
command is encountered using this variable, the first processor partition to encounter it, is assigned the next
available string. This continues until all the variable strings are consumed. Thus, this command can be used to run
50 simulations on 8 processor partitions. The simulations will be run one after the other on whatever partition
becomes available, until they are all finished. Universe style variables are incremented using the files
"tmp.oink.variable" and "tmp.oink.variable.lock" which you will see in your directory during such a OINK run.

The uloop style is identical to the universe style except that the strings are the integers from 1 to N. This allows
generation of long list of runs (e.g. 1000) without having to list N strings in the input script.

All universe− and uloop−style variables defined in an input script must have the same number of values.

For the equal style, a single string is specified which represents a formula that will be evaluated afresh each time
the variable is used. If you want spaces in the string, enclose it in double quotes so the parser will treat it as a
single argument. The formula computes a scalar quantity, which becomes the value of the variable whenever it is
evaluated.

Note that equal variables can produce different values at different stages of the input script or at different times
during a run. For example, if the equal variable is printed during a loop, different values could be printed each
time it was invoked. If you want a variable to be evaluated immediately, so that the result is stored by the variable
instead of the string, see the section below on "Immediate Evaluation of Variables".

The next command cannot be used with equal style variables, since there is only one string.

The formula for an equal variable can contain a variety of quantities. The syntax for each kind of quantity is
simple, but multiple quantities can be nested and combined in various ways to build up formulas of arbitrary
complexity.

72

Specifically, an formula can contain numbers, keywords, math operators, math functions, and references to other
variables.

Number 0.2, 100, 1.0e20, −15.4, etc

Constant PI

Keywords nprocs, time

Math operators (), −x, x+y, x−y, x*y, x/y, x^y, x==y, x!=y, xy, x>=y, xx||y, !x

Math functions
sqrt(x), exp(x), ln(x), log(x), sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), atan2(y,x),
random(x,y,z), normal(x,y,z), ceil(x), floor(x), round(x), ramp(x,y), stagger(x,y),
logfreq(x,y,z), vdisplace(x,y), swiggle(x,y,z), cwiggle(x,y,z)

Other variables v_name

The keywords allowed in a formula are nprocs and time. Nprocs is the number of processors being used. Time is
the elapsed time of the most recently executed named command or MR−MPI library command.

Math Operators

Math operators are written in the usual way, where the "x" and "y" in the examples can themselves be arbitrarily
complex formulas, as in the examples above.

Operators are evaluated left to right and have the usual C−style precedence: unary minus and unary logical NOT
operator "!" have the highest precedence, exponentiation "^" is next; multiplication and division are next; addition
and subtraction are next; the 4 relational operators "", and ">=" are next; the two remaining relational operators
"==" and "!=" are next; then the logical AND operator " and finally the logical OR operator "||" has the lowest
precedence. Parenthesis can be used to group one or more portions of a formula and/or enforce a different order of
evaluation than what would occur with the default precedence.

The 6 relational operators return either a 1.0 or 0.0 depending on whether the relationship between x and y is
TRUE or FALSE. For example the expression x

Math Functions

Math functions are specified as keywords followed by one or more parenthesized arguments "x", "y", "z", each of
which can themselves be arbitrarily complex formulas.

Most of the math functions perform obvious operations. The ln() is the natural log; log() is the base 10 log.

The random(x,y,z) function takes 3 arguments: x = lo, y = hi, and z = seed. It generates a uniform random number
between lo and hi. The normal(x,y,z) function also takes 3 arguments: x = mu, y = sigma, and z = seed. It
generates a Gaussian variate centered on mu with variance sigma^2. In both cases the seed is used the first time
the internal random number generator is invoked, to initialize it. For equal−style variables, every processor uses
the same seed so that they each generate the same sequence of random numbers.

IMPORTANT NOTE: Internally, there is just one random number generator for all equal−style variables. If you
define multiple variables (of each style) which use the random() or normal() math functions, then the internal
random number generators will only be initialized once, which means only one of the specified seeds will
determine the sequence of generated random numbers.

The ceil(), floor(), and round() functions are those in the C math library. Ceil() is the smallest integer not less than
its argument. Floor() if the largest integer not greater than its argument. Round() is the nearest integer to its
argument.

73

Variable References

Variable references access quantities calulated by other variables, which will cause those variables to be
evaluated. The name in the reference should be replaced by the name of a variable defined elsewhere in the input
script.

IMPORTANT NOTE: If you define variables in circular manner like this:

variable a equal v_b
variable b equal v_a
print $a

then OINK may run for a while when the print statement is invoked!

Immediate Evaluation of Variables:

There is a difference between referencing a variable with a leading $ sign (e.g. $x or ${abc}) versus with a
leading "v_" (e.g. v_x or v_abc). The former can be used in any command, including a variable command, to
force the immediate evaluation of the referenced variable and the substitution of its value into the command. The
latter is a required kind of argument to some commands (e.g. the fix ave/spatial or dump custom or thermo_style
commands) if you wish it to evaluate a variable periodically during a run. It can also be used in a variable formula
if you wish to reference a second variable. The second variable will be evaluated whenever the first variable is
evaluated.

As an example, suppose you use this command in your input script to define the variable "v" as

variable v equal vol

before a run where the simulation box size changes. You might think this will assign the initial volume to the
variable "v". That is not the case. Rather it assigns a formula which evaluates the volume (using the thermo_style
keyword "vol") to the variable "v". If you use the variable "v" in some other command like fix ave/time then the
current volume of the box will be evaluated continuously during the run.

If you want to store the initial volume of the system, you can do it this way:

variable v equal vol
variable v0 equal $v

The second command will force "v" to be evaluated (yielding the initial volume) and assign that value to the
variable "v0". Thus the command

thermo_style custom step v_v v_v0

would print out both the current and initial volume periodically during the run.

Note that it is a mistake to enclose a variable formula in double quotes if it contains variables preceeded by $
signs. For example,

variable vratio equal "${vfinal}/${v0}"

This is because the quotes prevent variable substitution (see this section on parsing input script commands), and
thus an error will occur when the formula for "vratio" is evaluated later.

74

Related commands:

next, jump, include, print

75

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

vertex_extract command

Syntax:

vertex_extract −i in1 −o out1.file out1.mr

in1 = graph edges: Key = Vi Vj, Value = NULL•
out1 = all vertices in graph: Key = Vi, Value = NULL•

Examples:

vertex_degree −i mre −o vlist.txt mrv

Description:

This is a named command which extracts a list of all the vertices in a graph from the edge list.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

In1 stores a set of edges. No assumption is made about duplicates or self edges, i.e. (Vi,Vj) may appear multiple
times, both (Vi,Vj) or (Vj,Vi) may appear, as may (Vi,Vi). The input is unchanged by this command.

Out1 will store the vertices in the graph.

Related commands: none

76

http://www.sandia.gov/~sjplimp/mapreduce.html

MR−MPI WWW Site −MR−MPI Documentation − OINK Documentation − OINK Commands

wordfreq command

Syntax:

wordfreq Ntop −i in1 −o out1.file out1.mr

Ntop = print Ntop of the most frequently occurring words to screen•
in1 = words: Key = word, Value = NULL•
out1 = frequency count of each word: Key = word, Value = count•

Examples:

wordfreq 10 −i v_files −o full.list NULL
wordfreq 10 −i v_files −o NULL NULL

Description:

This is a named command which calculates the frequency of word occurrence in an input data set, which is
typically a set of files.

See the named command doc page for various ways in which the −i inputs and −o outputs for a named command
can be specified.

In1 stores a set of words. The input is unchanged by this command.

If the input is one or more files then the files are read and each "word" is defined as separated by whitespace.
Note that you can pass a list of files as the input argument after the "−i" argument by using a variable, which in
turn can be initialized with a command−line argument to OINK. E.g. this line would work with the first example
above:

oink_linux −var files *.cpp <in.script

See this section of the manual and the variable doc page for more details.

Out1 will store the frequency count of all unique words.

Additional statistics can be generated and printed via the Ntop setting. The highest frequency Ntop words will be
printed to the screen with their count, in sorted order. If Ntop is 0, nothing is printed.

Related commands: none

77...1

http://www.sandia.gov/~sjplimp/mapreduce.html

	Table of Contents
	
	OINK Documentation
	Version info:
	Goals of OINK
	Contents of OINK Manual

	1. Building OINK
	1.1 Making OINK
	1.2 Building OINK as a library
	1.3 Running OINK
	2.6 Command-line options

	2. OINK Commands
	2.1 Input script operation
	2.2 Parsing rules
	2.3 Input script commands

	3. Adding Callback Functions to OINK
	Map() functions
	Reduce() functions
	Compare() functions
	Hash() functions
	Scan() functions

	4. Adding Commands to OINK
	4.1 Source files for the new class
	4.2 Methods in the new class
	4.3 Calls to the OINK object manager
	4.4 Calling back to map() and reduce() functions

	5. Errors
	5.1 Error &warning messages
	Errors:
	Warnings:

	cc_find command
	cc_stats command
	clear command
	named commands
	degree command
	degree_stats command
	degree_weight command
	echo command
	edge_upper command
	histo command
	if command
	include command
	input command
	jump command
	label command
	log command
	luby_find command
	mr command
	library commands
	neigh_tri command
	neighbor command
	next command
	output command
	pagerank command
	print command
	rmat command
	rmat2 command
	set command
	shell command
	sssp command
	sssp2 command
	tri_find command
	variable command
	Math Operators
	Math Functions
	Variable References

	vertex_extract command
	wordfreq command

